Figures for Chapter 10

Figure 10-1 Basic oscillator configuration.
Figure 10-2 Output voltage versus gain characteristic.
Figure 10-3 Generic negative resistance oscillator circuit.
Figure 10-4 Common negative resistance circuits for oscillators: (a) emitter/source feedback (no biasing shown) and (b) cross-coupled.
Figure 10-5 Negative resistance oscillator (a) and negative conductance oscillator (b).
Figure 10-6 Negative resistance circuit using emitter feedback: (a) ADS schematic including biasing, (b) small-signal model, and (c) large-signal model at the first harmonic frequency. For the ADS model legend, see next page.
Figure 10-7 Harmonic Balance simulation results for the example emitter feedback circuit at 1 GHz.
Figure 10-8 Harmonic Balance simulation of a 1 GHz oscillator with the emitter feedback negative resistance circuit.
Figure 10-9 Cross-coupled pair with biasing, creating negative resistance.
Figure 10-10 Harmonic balance simulation results for the example cross-coupled negative resistance circuit at 1 GHz.
Figure 10-11 Cross-coupled oscillator. OscPort and I_Probe are simulator features that behave as short circuits.
Figure 10-12 Harmonic balance simulation of a 1 GHz cross-coupled oscillator.
Figure 10-13 Oscillator phase noise according to Leeson’s model and the ideal oscillator model.
Figure 10-14 Feedback circuits with Pi- and T-type feedback loops.
Figure 10-15 Feedback oscillator with FET electric circuit model.
Table 10-1 Various feedback configurations for oscillator designs based on Figure 14(a)

<table>
<thead>
<tr>
<th>X_1, X_2</th>
<th>Hartley</th>
<th>Colpitts</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Hartley Circuit](image)

![Colpitts Circuit](image)

![Clapp Circuit](image)
Figure 10-16 Hartley and Colpitts oscillators.
Figure 10-17 Common gate, source, and drain configurations.
Figure 10-18 Colpitts oscillator design.
Figure 10-19 Quartz resonator equivalent electric circuit representation.
Figure 10-20 Susceptance response of a quartz element.
Figure 10-21 Sourced and loaded transistor and its flow graph model.
Figure 10-22 Network representation of the BJT with base inductance.
Figure 10-23 Rollett stability factor \((k) \) as a function of feedback inductance in common-base configuration.
Figure 10-24 Input stability circle for the oscillator design.
Figure 10-25 Series-feedback BJT oscillator circuit.
Figure 10-26 GaAs FET oscillator implementation with microstrip lines.
Figure 10-27 Stability factor for FET in common-gate configuration as a function of gate inductance.
Table 10-2 Dimensions of the transmission lines in the FET oscillator

<table>
<thead>
<tr>
<th>Transmission line</th>
<th>Electrical length, deg.</th>
<th>Width, mil</th>
<th>Length, mil</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL1</td>
<td>80</td>
<td>74</td>
<td>141</td>
</tr>
<tr>
<td>TL2</td>
<td>48.5</td>
<td>74</td>
<td>86</td>
</tr>
<tr>
<td>TL3</td>
<td>67</td>
<td>74</td>
<td>118</td>
</tr>
<tr>
<td>TL4</td>
<td>66</td>
<td>74</td>
<td>116</td>
</tr>
</tbody>
</table>
Figure 10-28 Dielectric resonator (DR) placed in proximity to a microstrip line.
Figure 10-29 Placement of DR along a transmission line and equivalent circuit representation for S-parameter computation.
Figure 10-30 Input stability circle of the FET in the DRO design example.
Figure 10-31 DR-based input matching network of the FET oscillator.
Figure 10-32 Frequency response of the output reflection coefficient for an oscillator design with and without DR.

(a) Oscillator design with DR
(b) Conventional oscillator without DR
Figure 10-33 Oscillator design based on a YIG tuning element.
Figure 10-34 Varactor diode oscillator.
Figure 10-35 Circuit analysis of varactor diode oscillator.
Figure 10-36 Gunn element and current versus voltage response.
Figure 10-37 Gunn element oscillator circuit with dielectric resonator (DR).
Figure 10-38 Heterodyne receiver system incorporating a mixer.
Figure 10-39 Basic mixer concept: two input frequencies are used to create new frequencies at the output of the system.
Figure 10-40 Spectral representation of mixing process.

(a) RF signal

(b) LO signal

(c) Down- and upconverted spectral products
Figure 10-41 Problem of image frequency mapping.
Figure 10-42 Two single-ended mixer types.
Figure 10-43 Conversion compression and intermodulation product of a mixer.
Figure 10-44 General single-ended mixer design approach.
Figure 10-45 DC-biasing network for BJT mixer design.
Figure 10-46 Connection of RF and LO sources to the BJT.
Figure 10-47 Input matching network for a single-ended BJT mixer.
Figure 10-48 Modified input matching network.
Figure 10-49 Complete electrical circuit of the low-side injection, single-ended BJT mixer with $f_{RF} = 1900$ MHz and $f_{IF} = 200$ MHz.
Figure 10-50 Balanced mixer involving a hybrid coupler.
Figure 10-51 Single-balanced MESFET mixer with coupler and power combiner.
Figure 10-52 Double-balanced mixer design.
Table 10-3 Comparison of different active mixer topologies.

<table>
<thead>
<tr>
<th>Mixer type</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active (vs. passive)</td>
<td>• Conversion gain
• Better linearity
• Lower LO power
• Simpler to implement</td>
<td>• Typically higher noise figure
• Less-predictable performance
• Limited to lower frequencies</td>
</tr>
<tr>
<td>Unbalanced (active)</td>
<td>• Lowest noise figure
• All ports single-ended</td>
<td>• Poor port-to-port isolation
• Poor linearity
• Difficult to implement</td>
</tr>
<tr>
<td>Single-balanced (active)</td>
<td>• LO-to-RF isolation
• RF-to-IF isolation
• Best linearity
• Good noise figure</td>
<td>• Differential IF output
• LO-to-IF feed-through</td>
</tr>
<tr>
<td>Double-balanced (active)</td>
<td>• LO-to-RF, LO-to-IF and RF-to-IF isolation
• Good spurious product rejection
• Good linearity
• Simple to implement</td>
<td>• High noise figure
• High power consumption</td>
</tr>
</tbody>
</table>
Figure 10-53 Single-balanced active mixer with drive stage.
Figure 10-54 Double-balanced (Gilbert cell) active mixer.
Figure 10-55 Image reject mixer.
Figure 10-56 Image rejection as a function of amplitude and phase imbalance. Note the double logarithmic scale for amplitude imbalance (dB on a log scale).
Figure 10-57 Base feedback negative resistance circuit: (a) simplified, (b) with bias and excitation components for input impedance analysis.
Figure 10-58 Harmonic balance simulation results for the example base feedback negative resistance circuit at 1 GHz.
Figure 10-59 1 GHz oscillator utilizing base feedback and a series resonator.
Figure 10-60 Harmonic balance simulation of the 1 GHz oscillator: (a) transistor voltage waveforms, (b) phase noise.
Figure 10-61 Simplified base feedback negative resistance circuit set up for input impedance analysis at 5 GHz.
Figure 10-62 Harmonic balance simulation results for the simplified base feedback negative resistance circuit at 5 GHz: (a) input impedance, (b) input admittance.
Figure 10-63 5 GHz oscillator utilizing base feedback and a parallel resonator.
Figure 10-64 Harmonic balance simulation of the 5 GHz oscillator: (a) transistor voltage waveforms, (b) phase noise.