Welcome!

John McNeill
mcneill@wpi.edu
Overview

- What is ECE anyway?
- ECE at WPI
- Careers for ECE graduates
- Student Q&A
What is ECE?

Health Care
Sustainability
Safety / Security

Solving Important Problems
Being Creative
Making a Difference
What is ECE?

Health Care
Sustainability
Safety / Security

Solving Important Problems
Being Creative
Making a Difference

WPI: Challenge + Support
Health Care

- Diagnostic Sensing / Imaging
- Assistive Technologies
- Neurally Controlled Prosthetics
- Clean Air, Water
Sustainable Energy

- Energy Storage
- Optimizing Solar Panel Energy Collection
- Smart Grid Security

Holy Name High School Wind Turbine that resulted from an ECE Undergraduate Project
Safety and Security

• Technology for first responders
• Data security
• Securing communication
• Smart grid security
• 24 full-time faculty
• 350 undergraduates, 140 full-time grad students
• ~ 80 BSECE, 60 MS, 4 PhD annually
• Innovative, project-based undergraduate program with a focus on creativity and teamwork
• Student project & research activity with corporations, National Science Foundation, Lincoln Labs, etc.
• Active graduate research program that integrates undergrads into many of the projects
Focus Areas within ECE

- Computers/Microprocessor systems
- Microelectronic Circuits
- Electromagnetics, Antennas
- Satellite and Indoor Positioning Systems
- Power Electronics and Systems
- Data Security, Cryptography
- Communications, Wireless Networking
- Software Defined Radio (SDR)
- Biomedical Signal Processing, Advanced Prosthetics
- Robotic Systems and Sensors
In ECE what is the first year like?

- Math, science, CS intro courses
- Humanities and arts
- ECE courses for first year students!
 - ECE 1799
 - ECE 2010
- INSIGHT first year advising program
- Get involved - play sports, join a theater group, work with a service organization, . . .
Two ways to get started
- You can start in any term: A, B, C, or D!

ECE1799: Frontiers and Current Issues of ECE
- Seminar based course for First Year students
 Survey breadth of activities, career choices, technologies across ECE.
- Primarily for students who have not decided on a major or who are unsure of an ECE major.

ECE 2010: Introduction to ECE - An Application Oriented Approach
- Laboratory-based introduction to the broad subject of ECE.
- Analyze, construct, test: iPod amplifier, RF transmitter, sensor systems ...
- Moderate depth treatment of a wide variety of fundamental topics.
- Typically followed immediately by ECE2019, ECE 2029 or ECE2049: Sensors & Circuits, Digital Circuit Design, Embedded Computing
Second year in ECE

ECE major area foundation courses
- $\approx 60\%$ courses laboratory based
- We believe in “hands-on” experience as essential to learning in our courses!

ECE 2799 – Ideas in Action
- Projects based foundation integration course and MQP prep
- Work in teams to design a solution to an open ended problem using all your background
- Named by Seniors and alums as the single best and most important course they took in any department at WPI!!!!

Design that Matters: “Always Ready” Solar Charged LED Lantern
What is the third year like?

- Opportunity to participate in a Global Program project (over 600 WPI students / year)
- Continue taking major, minor and/or dual-major courses
- Focus on an area within ECE, develop background needed for the capstone (MQP) project
- Plan for fourth year capstone project experience
- Plan seriously for graduate school, other post graduation education/work
Fourth year in ECE at WPI

- Complete capstone project – Intensive project with real results, the WPI MQP
- Advanced major area courses and complete minors/dual majors
- GRADUATE and then: Get a job, start a company, graduate school, medical school, law school, MBA, …
Example MQP Projects

Business
At WPI, a push to make smart wheelchairs
MQP project: Rescue Quadcopter

- Can fit through 22” x 6” opening
- Automatic collision avoidance
- Sensors: IR rangefinder, LIDAR and video camera
- Autonomous stable flight
- 1 kg payload capacity

- Semi-autonomous search and rescue quad-copter
- Indoor reconnaissance for first responders
MQP Projects – ECE Project Centers

Many ECE MQPs in collaboration with off-campus project sponsors:

- **Lincoln Labs Project Center**
 - Lexington MA

- **MITRE Corp. Project Center,**
 - Bedford MA

- **Silicon Valley Project Center,**
 - SRI, NVIDIA, Silicon Valley, CA

- **General Dynamics Project Center,**
 - Groton CT

- **Wall Street/London Project Center,**
 - New York, NY

- **China Project Centers**
Faculty Research Areas

- Cryptography and Information Security (CRIS) Laboratory
- Analog and Mixed Signal Microelectronics Laboratory
- Signal Processing and Information Networking Laboratory (SPIN)
- Embedded Computing Laboratory
- RF-Electronics and Medical Imaging Laboratory
- Cyber Security Laboratory
- Center for Advanced, Integrated, Radio Navigation (CAIRN)
- Antenna Laboratory
- Wireless Innovation Laboratory (WI Lab)
- Laboratory for Sensory and Physiologic Signal Processing L(SP)2
- Center for First Responder Technology / Precision Personnel Location

Many MQPs are based on these areas of faculty research and done in these research labs
Review: Why study ECE at WPI?

Year 1: Intro ECE: Theory and Practice (hands-on labs)
Year 2: ECE Design: Team Design Project
Year 3: Go Global: London, Venice, Bangkok, Melbourne, Washington, Cape Town, Hong Kong…
Year 4: Senior Design Project: Lincoln Labs, Silicon Valley, …
<table>
<thead>
<tr>
<th>Rank</th>
<th>School Name</th>
<th>2014 Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Harvey Mudd College</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>California Institute of Technology (Caltech)</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Massachusetts Institute of Technology (MIT)</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>Stanford University</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>Colorado School of Mines (In-State)</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>Georgia Institute of Technology (In-State)</td>
<td>23</td>
</tr>
<tr>
<td>13</td>
<td>Princeton University</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Carnegie Mellon University (CMU)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Dartmouth College</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Worcester Polytechnic Institute (WPI)</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>University of California - Berkeley (In-State)</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Harvard University</td>
<td></td>
</tr>
</tbody>
</table>
State of the Art, Student Centered

- Modern, well equipped and well maintained laboratories.
- Projects and laboratory experiences that are “real” and make a difference.
- A strong advising system.
- Focus on teamwork.
- Friendly, supportive community.
- Open 24/7 for student use.
Very active student organizations:
- IEEE Student Chapter
- HKN Honor Society
- WECE (Women in ECE)
- Pizza Fridays
- IEEE Barbecues
- Senior Dinner
- The Spark Party
Goals for WPI Students

Become an “Expert”
- Master the discipline
- Get the answers right

Solve Real Problems
- Very un-disciplined
- Ask the right questions

About Courses… and the Discipline

About Persistence… and Experience

Worcester Polytechnic Institute
Goals for WPI Faculty

Challenge

Provide structure
Demonstrate knowledge

Support

Unstructured problems
Mentor through process

About Courses…
and the Discipline

About Relationship …
and Experience
In ECE at WPI you will be ...

 Welcomed

 Valued

 Challenged

 Supported
Thanks for visiting today

Feel free to contact me:
John McNeill
mcneill@wpi.edu
508-831-5567
Computer Engineering or Computer Science??

- Hardware + Software vs. Software
- Engineering vs. Science

- Computer scientists discover underlying principles of computation: logic, language, knowledge organization...
- Computer engineers use these principles to solve problems in hardware and software involving an enormous number of applications, products and devices using embedded processors and DSPs.
Some more senior projects

- Develop a system that integrates wireless networking and RFID technology so that every store item (quantity, type, price) can be automatically inventoried.

- Develop microcomputer controlled sun tracker for increased efficiency solar energy collector

- Develop a multi-camera vision based robot tracker that will provide location information for all robots on a FIRST Competition field for use during autonomous scoring periods.

- Develop a high efficiency solar power converter for use on a nanosat.

- Develop an autonomous fire-finding and extinguishing robot.