IMPEDANCE AT A NODE (GENERAL)
(USE FOR R_{in}, R_{out} OF AMPLIFIER CIRCUITS)

PROCEDURE

1. SUPPRESS (SET = 0) ALL INDEPENDENT SOURCES
 V SOURCE \Rightarrow SHORT
 I SOURCE \Rightarrow OPEN
 NEED TO KEEP DEPENDENT SOURCES

2. APPLY TEST SOURCE V_x
 OR, IF EASIER, APPLY I_x AND
 CALCULATE V_x

3. CALCULATE ASSOCIATED I_x

4. IMPEDANCE AT NODE $\Rightarrow Z = \frac{V_x}{I_x}$

EXAMPLE INVERTING OP-AMP CIRCUIT R_{in}, R_{out}

WHAT R_{in} DOES V_{in} SEE?

WHAT R_{out} IS DRIVING LOAD R_L?
VIRTUAL GROUND: $V_\text{r} = 0$ (ASSUME IDEAL OP-AMP)

OHM’S LAW FOR R_1: $i_x = \frac{V_x - 0}{R_1} = \frac{V_x}{R_1}$

SOLVE FOR $\frac{V_x}{i_x} = R_1 \Rightarrow R_{\text{in}} = R_1$

R_{out}

SUPPRESS V_{IN}

INDEPENDENT SOURCE

INVERTING AMPLIFIER WITH ZERO INPUT:

$V_x = 0$ REGARDLESS OF i_x

$\frac{V_x}{i_x} = 0 \Rightarrow R_{\text{out}} = 0$