Studio 8 & 9 Review

- Operational Amplifier
 - Stability
 - Compensation
 - Miller Effect
 - Phase Margin
 - Unity Gain Frequency
 - Slew Rate Limiting

- Reading: Razavi ch. 9, 10
 - Lab 8, 9 op-amp is Fig. 10.34 in sec. 10.5.1
 - (see also Johns & Martin sec 5.2 pp. 232-242)
Two-stage op-amp

\[V_{DD} = +5V \]

All P: \(\frac{900}{10} \)

All N: \(\frac{350}{10} \)

\[V_{SS} = -5V \]

\[50\mu A \]

\[V_{G6} \]

\[V_{S1} \]
Analysis Strategy

• Recognize sub-blocks
• Represent as cascade of simple stages

V_{DD} = +5V

V_{SS} = -5V

M1, M2, M3, M4, M5, M6, M7, M8

V_{G3}, V_{G4}, V_{G5}, V_{G6}

V_{1}, V_{i2}, V_{S1}

All P: \frac{900}{10}
All N: \frac{350}{10}

50\mu A
Total op-amp model

Input differential pair Common source stage
DC operating point

<table>
<thead>
<tr>
<th></th>
<th>$I_D[\mu A]$</th>
<th>V_{GS-TH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>25</td>
<td>0.235</td>
</tr>
<tr>
<td>M2</td>
<td>25</td>
<td>0.235</td>
</tr>
<tr>
<td>M3</td>
<td>25</td>
<td>0.247</td>
</tr>
<tr>
<td>M4</td>
<td>25</td>
<td>0.247</td>
</tr>
<tr>
<td>M5</td>
<td>50</td>
<td>0.350</td>
</tr>
<tr>
<td>M6</td>
<td>50</td>
<td>0.332</td>
</tr>
<tr>
<td>M7</td>
<td>50</td>
<td>0.332</td>
</tr>
<tr>
<td>M8</td>
<td>50</td>
<td>0.332</td>
</tr>
</tbody>
</table>
Small signal parameters

<table>
<thead>
<tr>
<th></th>
<th>I_D [μA]</th>
<th>$V_{GS-V_{TH}}$</th>
<th>g_m [μA/V]</th>
<th>r_O</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>25</td>
<td>0.235</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>25</td>
<td>0.235</td>
<td></td>
<td>800kΩ</td>
</tr>
<tr>
<td>M3</td>
<td>25</td>
<td>0.247</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>25</td>
<td>0.247</td>
<td></td>
<td>1.43MΩ</td>
</tr>
<tr>
<td>M5</td>
<td>50</td>
<td>0.350</td>
<td>285</td>
<td>715kΩ</td>
</tr>
<tr>
<td>M6</td>
<td>50</td>
<td>0.332</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M7</td>
<td>50</td>
<td>0.332</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M8</td>
<td>50</td>
<td>0.332</td>
<td></td>
<td>400kΩ</td>
</tr>
</tbody>
</table>

Note: $\lambda_n = 0.050$ V$^{-1}$; $\lambda_p = 0.028$ V$^{-1}$
Total op-amp model: Low frequency gain

Input differential pair
\[a_{v1} = g_m (r_{o2} \| r_{o4}) \]
\[a_{v1} = (208 \mu A/V)(800 k\Omega \| 1.43 M\Omega) \]
\[a_{v1} = 106 \]

Common source stage
\[a_{v2} = g_m (r_{o5} \| r_{o8}) \]
\[a_{v2} = (285 \mu A/V)(400 k\Omega \| 715 k\Omega) \]
\[a_{v2} = 73 \]
Total op-amp model with capacitances

Gate of M5

\[C_g = (900\, \mu m)(10\, \mu m) \left(4.17E - 4\frac{F}{m^2}\right) \]

\[C_g = 3.74\, pF \]

Load: scope probe \(\approx 10\, pF \)
Total op-amp model with capacitances

First stage pole

\[f_{p1} = \frac{1}{2\pi (r_{O2}\parallel r_{O4})C_{g5}} \]

\[f_{p1} = \frac{1}{2\pi (800k\Omega\parallel 1.43M\Omega)(3.74\ pF)} \]

\[f_{p1} = 82kHz \]

Second stage pole

\[f_{p1} = \frac{1}{2\pi (r_{O5}\parallel r_{O8})C_L} \]

\[f_{p1} = \frac{1}{2\pi (400k\Omega\parallel 715k\Omega)(10\ pF)} \]

\[f_{p1} = 61kHz \]
Open loop transfer function

• Product of individual stage transfer functions

\[
A(j\omega) = \frac{g_{m1}(r_{o2}|r_{o4})g_{m5}(r_{o5}|r_{o8})}{1 + j\omega(r_{o2}|r_{o4})C_{g5}} \left[1 + j\omega(r_{o5}|r_{o8})C_L \right]
\]

• Numerically (using \(\omega = 2\pi f \))

\[
A(j\omega) = \frac{7738}{1 + j\left(\frac{f}{82kHz}\right)} \left[1 + j\left(\frac{f}{61kHz}\right) \right]
\]

• Check Bode plot simulation; predicts:
 – DC gain = 20\log(7738) = +78dB
 – Unity gain frequency ~ 6.2 MHz
Two-stage op-amp: Simulation Schematic
DC Operating Point Simulation

DC Response

OP POINT 2.885 mV

Systematic Offset!

A: (2.11783m -3.81929) deltA: (1.39772m 7.02858)
B: (3.51555m 3.20929) slope: 5.02881K
Bode plot

- Magnitude, phase on log scales
- Pole: Root of denominator polynomial

SLOPE:
-20dB/dec
Open loop Bode plot

- **Product of terms**: Sum on log-log plot

![Open loop Bode plot diagram](image)
Open Loop Bode Plot Simulation

Note: AC source at input also needs DC component to account for systematic offset!
Check Open Loop Bode Plot Simulation

√DC gain ~ +78dB

Unity gain ~ 16MHz

A: (15.592M, 36.0451m) delta: (255.918k, -195.979)
B: (15.8489M, -198.942) slope: -766.698u
Stability example: Closed loop follower

• Negative feedback: Output connected to inverting input
• Gain should be \(\sim 1 \)

\[
\begin{align*}
\nu_{\text{out}} &= A(\nu_{\text{in}} - \nu_{\text{out}}) \\
\nu_{\text{out}}(A + 1) &= A\nu_{\text{in}} \\
\nu_{\text{out}} &= \left(\frac{A}{A + 1} \right) \nu_{\text{in}} \\
&\approx 1 \text{ as } A \gg 1
\end{align*}
\]
Unity gain: Why bother?

- No buffer:
 Voltage divider
- Signal reduced due to voltage drop across R_S

- With buffer:
 No current required from source

$v_{out} = \left(\frac{R_L}{R_L + R_S} \right) v_{in}$

$v_{out} = v_{in}$
Lab 9 Problem: Instability

- Oscillation superimposed on desired output!?!
Lab 9 Problem: Instability

- Ground \(v_{in} \): Output for zero input?!?
- Why? Need...
Controls: ES3011 in 20 minutes

• General framework
 A: Forward Gain
 β: Feedback Factor
 fraction of output fed back to input

![Diagram of feedback control system]
Example: Op-amp, Noninverting Gain

A: Forward Gain
Op-amp open loop gain
\[V_{out} = A(V_+ - V_-) \]
Transfer function \(A(j\omega) \)

\[\beta: \text{Feedback Factor} \]
\[\beta = \frac{R_1}{R_1 + R_2} \]
Closed Loop Gain

- **Output**
 \[v_{out} = A\left(v_{in} - \beta v_{out}\right) \]
 \[v_{+} - v_{-} \]

- **Solve for** \(\frac{v_{out}}{v_{in}} \)
 \[v_{out} = Av_{in} - A\beta v_{out} \]
 \[(1 + A\beta)v_{out} = Av_{in} \]
 \[\frac{v_{out}}{v_{in}} = \frac{A}{1 + A\beta} \]
Op-amp with negative feedback

• If $A\beta >> 1$

$$\frac{v_{out}}{v_{in}} = \frac{A}{1 + A\beta} \approx \frac{A}{A\beta} \Rightarrow \frac{v_{out}}{v_{in}} \approx \frac{1}{\beta}$$

• Closed loop gain determined only by β

• Advantage of negative feedback:
 Open loop gain A can be ugly (nonlinear, poorly controlled) as long as it's large!
Example: Op-amp, Noninverting Gain

\(\beta: \text{Feedback Factor} \)

\[\beta = \frac{R_1}{R_1 + R_2} \]

Closed loop gain

\[\frac{v_{\text{out}}}{v_{\text{in}}} = \frac{R_1 + R_2}{R_1} = \frac{1}{\beta} \]
Reexamine closed loop transfer function

- Output with no input: infinite gain
- Infinite when $1 + A\beta = 0$
- Condition for oscillation:
 \[
 1 + A\beta = 0
 \]
- In general A, β functions of ω
- If there's a frequency ω at which $1 + A\beta = 0$: Oscillation at that frequency!
Example: follower

\[\beta = 1 \quad \rightarrow \quad \frac{v_{out}}{v_{in}} = \frac{A}{1 + A} \]

- Use \(A(j\omega) \),
 solve for \(1+A = 0 \)
- No thanks!

\[A(j\omega) = \frac{g_{m1}(r_{o2}\parallel r_{o4})g_{m5}(r_{o5}\parallel r_{o8})}{\left[1 + j\omega(r_{o2}\parallel r_{o4})C_{g5}\right]\left[1 + j\omega(r_{o5}\parallel r_{o8})C_L\right]} \]
Reexamine condition for oscillation

\[1 + A\beta = 0 \rightarrow A\beta = -1 \]

Magnitude and phase condition:

\[|A\beta| = 1 \text{ AND } \angle A\beta = -180^\circ \]

- Easier to get from Bode plot
Look at original $A\beta$ for 2 stage op-amp

- Find ω at which $|A\beta| = 1$; Check $\angle A\beta \ -180^\circ$?

Trouble!
Simulation Aβ for 2 stage op-amp

AC Response

Unity loop gain at ~ 16MHz

> 180° phase lag at unity loop gain!

- Causes closed-loop instability
Compensation: “Dominant Pole”

- Move one pole to lower frequency
- How?

Move unity loop gain frequency f_T to lower value
So accumulated phase lag at f_T hasn’t reached -180°
Compensation: “Dominant Pole”

- Need to increase capacitance by $\approx 1000X$:
 BAD! Die area cost
Miller Effect

- Impedance across inverting gain stage G
- Reduced by factor equal to $(1+G)$
Math for Miller effect

\[i_x = \frac{v_x - (-Gv_x)}{Z} \]

\[i_x = \frac{v_x(1 + G)}{Z} \]

\[\frac{v_x}{i_x} = Z_{in} = \frac{Z}{(1 + G)} \]

- Impedance across inverting gain stage \(G \)
- Reduced by factor equal to \((1+G)\)
Example: Impedance is capacitive

- Capacitance multiplied by (1+G)
 \[Z_{in} = \frac{Z}{(1 + G)} \]
 \[Z = \frac{1}{sC} \quad \Rightarrow \quad Z_{in} = \frac{1}{s(1 + G)C} \]

 - Equivalent capacitance higher by factor 1+G
 - Problem for high bandwidth amplifiers
 - Opportunity for compensation ...
Miller Compensation

• Need effect of large capacitance
• Use Miller effect to multiply small on-chip capacitance to higher effective value
• Effect of large capacitance without die area cost of large capacitance
New schematic

- Add C_C across 2nd stage
New loop gain transfer function

AC Response

Unity loop gain at ~65kHz

125° phase lag at unity loop gain
New step response

• No oscillation!
New step response with C_C

- Zoom in on small-signal step response:
 Some overshoot and ringing
Reason: RHP zero in complete transfer function

Complete transfer function looks like:

\[
A(j\omega) = \frac{A_0 \left[1 - j(\omega/\omega_Z)\right]}{1 + j(\omega/\omega_{p1})\left[1 + j(\omega/\omega_{p2})\right]}
\]

See Razavi 10.5, Johns & Martin 5.2
"Phase margin"

- How stable is new transfer function?
- Phase margin = Phase lag at $|A\beta| = 1$ minus (-180°)
- Usually want at least 60° for stable step response
Phase margin of op-amp with C_C

Unity loop gain at ~65kHz

125° phase lag at unity loop gain

Phase margin = 55°
Solution to RHP zero problem

- Add R_Z in series with C_C

Moves RHP zero to much higher frequency
New step response with R_Z, C_C

- Zoom in on small-signal step response:
 No overshoot, ringing: phase margin improved
Large signal step response

- Slew Rate Limiting!?!?

See Solomon op-amp paper for model; rising/falling asymmetry
Dominant pole op-amp model

- Simpler model with dominant pole from C_C
Approximate dominant pole transfer function

\[|A(j\omega)| \approx \frac{g_{m1}(r_{o2}\|r_{o4})A_2}{1 + j\omega(r_{o2}\|r_{o4})A_2C_C} \]

\[A_2 = g_{m5}(r_{o5}\|r_{o8}) \]

Miller multiplied \(C_C \)

2nd stage gain
Unity gain frequency

- Depends only on
 - Input stage transconductance \(g_{m1} \)
 - Compensation capacitor \(C_C \)

\[
|A(j\omega)| \approx \frac{g_{m1}(r_{o2}||r_{o4})A_2}{\omega(r_{o2}||r_{o4})A_2C_C}
\]

\[
|A(j\omega)| = 1 \quad \text{at} \quad \omega_T
\]

\[
\omega_T \approx \frac{g_{m1}}{C_C}
\]
Slew rate

- \(I = C \frac{dV}{dt} \)
- Only limited current \(I_{\text{BIAS}} \) available to charge, discharge \(C_C \)
Slew rate

\[I = C \frac{dV}{dt} \implies \frac{dV}{dt} = \frac{I_{BIAS}}{C_C} \]
Summary Op-amp:

- Stability
- Compensation
- Miller effect
- Phase Margin
- Unity gain frequency
- Slew Rate Limiting