R. Ludwig and G. Bogdanov "RF Circuit Design: Theory and Applications" 2nd edition

Figures for Appendices

Quantity	Symbol	Units	Value
Permittivity in vacuum	\mathcal{E}_0	F/m	8.85418×10^{-12}
Permeability in vacuum	μ_0	H/m	$4\pi \times 10^{-7}$
Speed of light in vacuum	С	m/s	2.99792×10^{8}
Boltzmann's constant	k	J/K	1.38066×10^{-23}
Electron charge	е	С	1.60218×10^{-19}
Electron rest mass	m ₀	kg	0.91095×10^{-30}
Electon volt	eV	J	1.60218×10^{-19}

Table A-1 Physical constants

Quantity	Symbol	Units	Value
femto	f	_	10 ⁻¹⁵
pico	р	_	10 ⁻¹²
nano	n	_	10 ⁻⁹
micro	μ	_	10 ⁻⁶
milli	m	_	10 ⁻³
kilo	k	_	10 ³
mega	М	_	10 ⁶
giga	G	_	10 ⁹
tera	Т	_	10 ¹²
mil	mil	$0.001 \text{ inch} = 25.4 \ \mu \text{m}$	
	International	System of Units	
Quantity	Symbol	Units	Dimensions
Electric Charge	С	coulomb	$\mathbf{A} \cdot \mathbf{s}$
Current	А	ampere	C/s
Voltage	V	volts	J/C
Frequency	Hz	hertz = cycles per second	1/s
Electric field	Е	V/m	
Magnetic field	Н	A/m	
Magnetic flux	Wb	weber	$V \cdot s$
Energy	J	joule	$N \cdot m$
Power	W	watt	J/s
Capacitance	F	farad	C/V
Inductance	Н	henry	Wb/A
Resistance	Ω	ohm	V/A
Conductance	S	siemens	A/V
Conductivity	σ	S/m	
Resistivity	ρ	$\Omega \cdot m$	

Table A-2Relevant quantities, units, and symbols

Table A-3 Relative permittivity and loss tangent for different dielectric materials

		Loss Tangent				
Material	ε _r	<i>f</i> = 1 kHz	<i>f</i> = 1 MHz	<i>f</i> = 100 MHz	<i>f</i> = 3 GHz	
Aluminum oxide	9.8	0.00057	0.00033	0.0003	0.001	
Barium titanate	37	0.00044	0.0002		0.0023	
Porcelain	5	0.0140	0.0075	0.0078		
Silicon dioxide	4.5	0.00075	0.0001	0.0002	0.00006	
Araldite CN-501	3.35	0.0024	0.0190	0.0340	0.0270	
Epoxy resin RN-48	3.52	0.0038	0.0142	0.0264	0.0210	
Foamed polystyrene	1.03	< 0.0002	< 0.0001	< 0.0002	0.0001	
Bakelite BM120	3.95	0.0220	0.0280	0.0380	0.0438	
Polyethylene	2.3	< 0.0002	< 0.0002	0.0002	0.00031	
Polystyrene	2.5	< 0.00005	0.00007	< 0.0001	0.00033	
Teflon	2.1	< 0.0003	< 0.0002	< 0.0002	0.00015	
Sodium chloride	5.9	< 0.0001	< 0.0002		< 0.0005	
Water (distilled)	80		0.0400	0.0050	0.1570	

Wire Size (AWG)	Diameter in mils	Diameter in millimeters	Area in square mils	Area in square millimeters
1	289.3	7.34822	7.34822 262934	
2	257.6	6.54304	208469	134.4959
3	229.4	5.82676	165324	106.6606
4	204.3	5.18922	131125	84.59682
5	181.9	4.62026	103948	67.06296
6	162.0	4.1148	82448.0	53.19212
7	144.3	3.66522	65415.8	42.20364
8	128.5	3.2639	51874.8	33.46752
9	114.4	2.90576	41115.2	26.52585
10	101.9	2.58826	32621.1	21.04581
11	90.7	2.30378	25844.2	16.67370
12	80.8	2.05232	20510.3	13.23244
13	72.0	1.8288	16286.0	10.50709
14	64.1	1.62814	12908.2	8.327859
15	57.1	1.45034	10242.9	6.608296
16	50.8	1.29032	8107.32	5.230518
17	45.3	1.15062	6446.83	4.159237
18	40.3	1.02362	5102.22	3.291754
19	35.9	0.91186	4048.92	2.612199
20	32.0	0.8128	3216.99	2.075474
21	28.5	0.7239	2551.76	1.646293
22	25.3	0.64262	0.64262 2010.90	
23	22.6	0.57404	1604.60	1.035224
24	20.1	0.51054	1269.23	0.818860

Table A-4American wire gauge chart

Wire Size (AWG)	Diameter in mils	Diameter in millimeters	Area in square mils	Area in square millimeters	
25	17.9	0.45466	1006.60	0.649417	
26	15.9	0.40386	794.226	0.512403	
27	14.2	0.36068	633.470	0.408690	
28	12.6	0.32004	498.759	0.321780	
29	11.3	0.28702	401.150	0.258806	
30	10.0	0.254	314.159	0.202683	
31	8.9	0.22606	248.846	0.160545	
32	8.0	0.2032	201.062	0.129717	
33	7.1	0.18034	158.368	0.102172	
34	6.3	0.16002	124.690	0.080445	
35	5.6	0.14224	98.5203	0.063561	
36	5.0	0.127	78.5398	0.050671	
37	4.5	0.1143	63.6173	0.041043	
38	4.0	0.1016	50.2654	0.032429	
39	3.5	0.0889	38.4845	0.024829	
40	3.1	0.07874	30.1907	0.019478	

Table A-4American wire gauge chart (Continued)

Figure C-1 Circle representation in the complex *z*-plane.

	[Z]	[Y]	[h]	[ABCD]
[Z]	$\begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix}$	$\begin{bmatrix} Z_{22} & Z_{12} \\ \overline{\Delta Z} & -\overline{\Delta Z} \\ Z_{21} & \overline{Z_{11}} \\ -\overline{\Delta Z} & \overline{\Delta Z} \end{bmatrix}$	$\begin{bmatrix} \Delta Z & Z_{12} \\ Z_{22} & Z_{22} \\ -\frac{Z_{21}}{Z_{22}} & \frac{1}{Z_{22}} \end{bmatrix}$	$\begin{bmatrix} \frac{Z_{11}}{Z_{21}} \frac{\Delta Z}{Z_{21}} \\ \frac{1}{Z_{21}} \frac{Z_{22}}{Z_{21}} \end{bmatrix}$
[Y]	$\begin{bmatrix} \frac{Y_{22}}{\Delta Y} & \frac{Y_{12}}{\Delta Y} \\ -\frac{Y_{21}}{\Delta Y} & \frac{Y_{11}}{\Delta Y} \end{bmatrix}$	$\left[\begin{array}{c} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{array}\right]$	$\begin{bmatrix} \frac{1}{Y_{11}} & -\frac{Y_{12}}{Y_{11}} \\ \frac{Y_{21}}{Y_{11}} & \frac{\Delta Y}{Y_{11}} \end{bmatrix}$	$\begin{bmatrix} -\frac{Y_{22}}{Y_{21}} & -\frac{1}{Y_{21}} \\ -\frac{\Delta Y}{Y_{21}} & -\frac{Y_{11}}{Y_{21}} \end{bmatrix}$
[h]	$\begin{bmatrix} \frac{\Delta h}{h_{22}} & \frac{h_{12}}{h_{22}} \\ -\frac{h_{21}}{h_{22}} & \frac{1}{h_{22}} \end{bmatrix}$	$\begin{bmatrix} \frac{1}{h_{11}} & -\frac{h_{12}}{h_{11}} \\ \frac{h_{21}}{h_{11}} & \frac{\Delta h}{h_{11}} \end{bmatrix}$	$\left[\begin{array}{c}h_{11} \ h_{12}\\h_{21} \ h_{22}\end{array}\right]$	$\begin{bmatrix} -\frac{\Delta h}{h_{21}} & -\frac{h_{11}}{h_{21}} \\ -\frac{h_{22}}{h_{21}} & -\frac{1}{h_{21}} \end{bmatrix}$
[ABCD]	$\begin{bmatrix} \frac{A}{C} & \underline{\Delta ABCD} \\ \frac{1}{C} & \frac{D}{C} \\ \frac{1}{C} & \frac{D}{C} \end{bmatrix}$	$\begin{bmatrix} \frac{D}{B} & -\frac{\Delta ABCD}{B} \\ -\frac{1}{B} & \frac{A}{B} \end{bmatrix}$	$\begin{bmatrix} \frac{B}{D} & \frac{\Delta A B C D}{D} \\ -\frac{1}{D} & \frac{C}{D} \end{bmatrix}$	$\left[\begin{array}{c}A & B\\C & D\end{array}\right]$

Conversion between Z, Y, h, and ABCD representations

$$\begin{split} \Delta Z &= Z_{11} Z_{22} - Z_{12} Z_{21}, \quad \Delta Y = Y_{11} Y_{22} - Y_{12} Y_{21}, \\ \Delta h &= h_{11} h_{22} - h_{12} h_{21}, \ \Delta ABCD = AD - BC \end{split}$$

Conversion from S-parameters to Z, Y, h, or ABCD representations

[Z]	$Z_{11} = Z_0 \frac{(1+S_{11})(1-S_{22}) + S_{12}S_{21}}{\Psi_1} \qquad Z_{12} = Z_0 \frac{2S_{12}}{\Psi_1} \qquad Z_{21} = Z_0 \frac{2S_{21}}{\Psi_1}$
	$Z_{22} = Z_0 \frac{(1 - S_{11})(1 + S_{22}) + S_{12}S_{21}}{\Psi_1}$
	where $\Psi_1 = (1 - S_{11})(1 - S_{22}) - S_{12}S_{21}$
	$Y_{11} = \frac{(1 - S_{11})(1 + S_{22}) + S_{12}S_{21}}{Z_0\Psi_2} \qquad Y_{12} = \frac{-2S_{12}}{Z_0\Psi_2} Y_{21} = \frac{-2S_{21}}{Z_0\Psi_2}$
[Y]	$Y_{22} = \frac{(1+S_{11})(1-S_{22}) + S_{12}S_{21}}{Z_0\Psi_2}$
	where $\Psi_2 = (1 + S_{11})(1 + S_{22}) - S_{12}S_{21}$
[h]	$h_{11} = Z_0 \frac{(1+S_{11})(1+S_{22}) - S_{12}S_{21}}{\Psi_3} \qquad h_{12} = \frac{2S_{12}}{\Psi_3} \qquad h_{21} = \frac{-2S_{21}}{\Psi_3}$
	$h_{22} = \frac{(1 - S_{11})(1 - S_{22}) - S_{12}S_{21}}{Z_0 \Psi_3}$
	where $\Psi_3 = (1 - S_{11})(1 + S_{22}) + S_{12}S_{21}$
[ABCD]	$A = \frac{(1+S_{11})(1-S_{22}) + S_{12}S_{21}}{2S_{21}} \qquad B = Z_0 \frac{(1+S_{11})(1+S_{22}) - S_{12}S_{21}}{2S_{21}}$
	$C = \frac{(1 - S_{11})(1 - S_{22}) - S_{12}S_{21}}{2S_{21}Z_0} \qquad D = \frac{(1 - S_{11})(1 + S_{22}) + S_{12}S_{21}}{2S_{21}}$

Conversion from Z, Y, h, and ABCD representations to S-parameters

$$\begin{bmatrix} \mathbf{Z} \end{bmatrix} \begin{array}{l} S_{11} = \frac{(Z_{11} - Z_0)(Z_{22} + Z_0) - Z_{12}Z_{21}}{\Psi_4} & S_{12} = \frac{2Z_{12}Z_0}{\Psi_4} & S_{21} = \frac{2Z_{21}Z_0}{\Psi_4} \\ S_{22} = \frac{(Z_{11} + Z_0)(Z_{22} - Z_0) - Z_{12}Z_{21}}{\Psi_4} \\ \text{where } \Psi_4 = (Z_{11} + Z_0)(Z_{22} + Z_0) - Z_{12}Z_{21} \\ \\ S_{11} = \frac{(1 - Z_0Y_{11})(1 + Z_0Y_{22}) + Y_{12}Y_{21}Z_0^2}{\Psi_5} & S_{12} = \frac{-2Y_{12}Z_0}{\Psi_5} & S_{21} = \frac{-2Y_{21}Z_0}{\Psi_5} \\ \\ \begin{bmatrix} \mathbf{Y} \end{bmatrix} & S_{22} = \frac{(1 + Z_0Y_{11})(1 - Z_0Y_{22}) + Y_{12}Y_{21}Z_0^2}{\Psi_5} \\ \text{where } \Psi_5 = (1 + Z_0Y_{11})(1 + Z_0Y_{22}) - Y_{12}Y_{21}Z_0^2 \\ \\ \end{bmatrix} & s_{11} = \frac{(h_{11}/Z_0 - 1)(h_{22}Z_0 + 1) - h_{12}h_{21}}{\Psi_6} & S_{12} = \frac{2h_{12}}{\Psi_6} & S_{21} = \frac{-2h_{21}}{\Psi_6} \\ \\ \begin{bmatrix} \mathbf{h} \end{bmatrix} & S_{22} = \frac{(h_{11}/Z_0 + 1)(1 - h_{22}Z_0) + h_{12}h_{21}}{\Psi_6} \\ \text{where } \Psi_6 = (h_{11}/Z_0 + 1)(h_{22}Z_0 + 1) - h_{12}h_{21}} \\ \\ \end{bmatrix} & s_{11} = \frac{A + B/Z_0 - CZ_0 - D}{\Psi_7} & S_{12} = \frac{2(AD - BC)}{\Psi_7} & S_{21} = \frac{2}{\Psi_7} \\ \\ \begin{bmatrix} \mathbf{ABCD} \end{bmatrix} & S_{22} = \frac{-A + B/Z_0 - CZ_0 + D}{\Psi_7} \\ \text{where } \Psi_7 = A + B/Z_0 + CZ_0 + D \end{array}$$

Table E-5 Properties of Ge, Si, GaAs, InP, 4H-SiC, GaN and SiGe at 300 K

Properties	Ge	Si	GaAs	InP	4H-SiC	GaN	Si _{.5} Ge _{.5}
Dielectric constant	16	11.9	13.1	12.5	10	9.5	13.9
Energy gap, eV	0.66	1.12	1.424	1.344	3.23	3.39	0.945
Intrinsic carrier concentration, cm ⁻³	2.40×10^{13}	1.45×10^{10}	1.79×10^{6}	1.30×10^{7}	1.50×10^{-8}	3.00×10^{10}	1.20×10^{13}
Intrinsic resistivity, $\Omega \cdot cm$	47	2.30×10^{5}	1.00×10^{8}	8.60×10^{7}	1.00×10^{12}	1.00×10^{10}	1.15×10^{5}
Minority carrier lifetime, s	1.00×10^{-3}	2.50×10^{-3}	1.00×10^{-8}	2.00×10^{-9}	1.00×10^{-9}	1.00×10^{-9}	1.75×10^{-3}
Electron mobility (drift), $cm^2/(V \cdot s)$	3900	1350	8500	4600	1140	1250	7700
Normalized effective mass of the electron	0.55	1.08	0.067	0.073	0.29	0.2	0.92
Hole mobility (drift), $cm^2/(V \cdot s)$	1900	480	400	150	50	850	1175
Normalized effective mass of the hole	0.37	0.56	0.48	0.64	1	0.8	0.54
Saturated electron velocity, cm/s	6.00×10^{6}	1.00×10^{7}	1.00×10^{7}	1.00×10^{7}	2.00×10^{7}	2.20×10^7	1.00×10^{7}
Breakdown electric field, V/cm	1.00×10^{5}	3.00×10^{5}	6.00×10^{5}	5.00×10^{5}	3.50×10^{6}	2.00×10^{6}	2.00×10^{5}
Electron affinity χ, V	4	4.05	4.07	4.38	3.7	4.1	4.025
Specific heat, J/ $(g \cdot K)$	0.31	0.7	0.35	0.31	0.69	0.49	0.505
Thermal conductivity, W/ (cm \cdot K)	0.6	1.5	0.46	0.68	3.7	1.3	0.083
Thermal diffusivity, cm ² /s	0.36	0.9	0.24	0.372	1.7	0.43	0.63

Figure F-1 P_n -junction under forward bias.

(a) Transmission line model

(b) Microstrip line realization

Figure G-1 3 dB Wilkinson power divider.

Figure G-2 Frequency response of Wilkinson power divider.

Figure G-3 Even and odd mode representation of Wilkinson divider (o.c.= open circuit).

Figure G-4 Microstrip line realization of quadrature hybrid.

Figure G-5 Building blocks of branch line coupler.

Figure G-6 A 180° ring coupler.

Figure G-7 A 3dB Lange coupler.

Figure H-1 Noise voltage of a circuit.

Figure H-2 Equivalent voltage and current models for noisy resistor.

Figure H-3 Noisy two-port network and its equivalent representation.

Figure H-4 Transformed network model with noise source at the input.

Figure H-5 Amplifier model and network representation with noise source.

Figure H-6 Generic noise model for noise figure computation.

Figure H-7 Noise source modeled at network input.

Figure H-8 Cascaded network representation.