R. Ludwig and G. Bogdanov "RF Circuit Design: Theory and Applications" 2^{nd} edition

Figures for Chapter 9

Figure 9-1 Generic amplifier system.

Figure 9-2 Source and load connected to a single-stage amplifier network.

Figure 9-3 Stability circle $|\Gamma_{in}| = 1$ in the complex Γ_L -plane and stability circle $|\Gamma_{out}| = 1$ in the complex Γ_S -plane.

Figure 9-4 Output stability circles denoting stable and unstable regions.

Figure 9-5 Input stability circles denoting stable and unstable regions.

Figure 9-6 Different input stability regions for $|S_{22}| < 1$ depending on ratio between r_S and $|C_{in}|$.

(b) $|\Gamma_S| = 1$ circle must reside inside

Figure 9-7 Unconditional stability in the Γ_S and Γ_{out} planes for $|S_{11}| < 1$.

Frequency	uency S_{11} S_{12}		<i>S</i> ₂₁	<i>S</i> ₂₂
500 MHz	0.70∠–57°	0.04∠47°	10.5∠136°	0.79∠–33°
750 MHz	0.56∠–78°	0.05∠33°	8.6∠122°	0.66∠–42°
1000 MHz	0.46∠–97°	0.06∠22°	7.1∠112°	0.57∠–48°
1250 MHz	0.38∠–115°	0.06∠14°	6.0∠104°	0.50∠–52°

Table 9-1BFG505W S-parameters as functions of frequency

<i>f</i> , MHz	k	$ \Delta $	C _{in}	r _{in}	C _{out}	r _{out}
500	0.41	0.69	39.04∠108°	38.62	3.56∠70°	3.03
750	0.60	0.56	62.21∠119°	61.60	4.12∠70°	3.44
1000	0.81	0.45	206.23∠131°	205.42	4.39∠69°	3.54
1250	1.02	0.37	42.42∠143°	41.40	4.24∠68°	3.22

Table 9-2Stability parameters for BFG505W

Figure 9-8 Input and output stability circles for BFG505W computed at f = 750 MHz and f = 1.25 GHz.

Figure 9-9 Stability circles for k > 1 and $|\Delta| > 1$.

Figure 9-10 Stabilization of input port through series resistance or shunt conductance.

Figure 9-11 Stabilization of output port through series resistance or shunt conductance.

Figure 9-12 Input and output stability circles and circles for finding stabilizing series resistance and shunt conductances.

Figure 9-13 Unilateral power gain system arrangement.

G_S	g_S	d_{g_S}	r_{g_S}
2.6 dB	0.93	0.67∠–125°	0.14
2 dB	0.81	0.62∠–125°	0.25
1 dB	0.64	0.54∠–125°	0.37
0 dB	0.51	0.47∠–125°	0.47
-1 dB	0.41	0.40∠–125°	0.56

Table 9-3Parameters for constant source gain circles in Example 9-7

Figure 9-14 Constant source gain circles in the Smith Chart.

Figure 9-15 Constant load gain circle in the Smith Chart.

Figure 9-16 Constant operating power circle in the Γ_L -plane.

Figure 9-17 Constant noise figure circle and constant operating gain circle mapped into the Γ_{S} -plane.

Figure 9-18 System configuration for input and output VSWR.

Figure 9-19 Constant operating power gain, noise figure, and input VSWR circle in $\Gamma_{\mathcal{S}}$ -plane.

Figure 9-20 Input and output VSWR as a function of angle α .

<i>f</i> , GHz	S ₂₁	<i>S</i> ₁₁	<i>S</i> ₂₂
2	3.72	0.61∠165°	0.45∠–48°
3	2.56	0.62∠149°	0.44∠–58°
4	1.96	0.62∠130°	0.48∠–78°

Table 9-4 S-parameters of AT41410 BJT ($I_C = 10$ mA, $V_{CE} = 8$ V)

Figure 9-22 Broadband amplifier with 7.5 dB gain and \pm 0.2 dB gain flatness over a frequency range from 2 to 4 GHz.

f, GHz	Γ_S	G_{T} , dB	VSWR _{IMN}	VSWR _{OMN}
2	0.74∠–83°	7.65	13.1	2.6
3	0.68∠–101°	7.57	5.3	2.6
4	0.66∠–112°	7.43	2.0	2.8

Table 9-5Parameters of a broadband amplifier

(b) Balanced amplifier using 3 dB Wilkinson power divider and combiner

Figure 9-23 Block diagram of a balanced broadband amplifier.

Figure 9-24 Negative resistive feedback circuits.

Figure 9-25 Low-frequency model of negative feedback circuit.

f, MHz	<i>S</i> ₁₁	$\angle S_{11}$	S ₂₁	$\angle S_{21}$	<i>S</i> ₁₂	$\angle S_{12}$	S ₂₂	$\angle S_{22}$
10	0.877	-0.3°	7.035	179.6°	1×10^{-4}	66.8°	0.805	-0.1°
100	0.876	-2.4°	7.027	176.1°	7×10^{-4}	85.9°	0.805	-1.4°
250	0.870	-5.9°	6.983	170.2°	0.002	84.3°	0.803	-3.4°
500	0.850	-11.5°	6.834	160.6°	0.003	80.5°	0.797	-6.6°
750	0.820	-16.9°	6.607	151.4°	0.004	76.0°	0.789	-9.8°
1000	0.783	-21.7°	6.327	142.8°	0.005	68.2°	0.777	-12.7°
1500	0.700	-29.6°	5.711	127.2°	0.007	74.1°	0.755	-18.1°
2000	0.619	-35.7°	5.119	113.8°	0.007	74.1°	0.735	-23.0°

Table 9-6S-parameters for the transistor in Example 9-17

	$ S_{21} ^2$, dB					
			$R_1 = 276 \ \Omega,$			
	$R_1 = 208 \ \Omega,$	$R_1 = 276 \ \Omega,$	$R_2 = 1.4 \ \Omega,$			
<i>f</i> , MHz	$R_2 = 4.1 \ \Omega$	$R_2 = 1.4 \ \Omega$	$L_1 = 4.5 \text{ nH}$			
10	7.50	10.01	10.01			
100	7.50	10.01	10.01			
250	7.50	10.00	10.01			
500	7.50	9.97	10.00			
750	7.50	9.93	10.00			
1000	7.50	9.88	10.00			
1500	7.51	9.75	9.99			
2000	7.54	9.59	9.99			

Table 9-7Insertion gain of the feedback amplifier

Figure 9-26 Output power of the amplifier as a function of input power.

Figure 9-27 Observing the intermodulation distortion of an amplifier.

Figure 9-28 Recording of IMD based on input-output power relation.

Figure 9-29 Dual-stage transistor amplifier.

Transistor	F[dB]	$G_{\max}[dB]$	$P_{\text{out, 1dB}}[\text{dBm}]$	IP3[dBm]
BFG505	1.9	10	4	10
BFG520	1.9	9	17	26
BFG540	2	7	21	34

Table 9-8Transistor characteristics for Example 9-18

Figure 9-30 Block diagram of a three-stage amplifier.

Figure 9-31 The MMIC amplifier schematic (courtesy of NXP) installed in a typical application circuit (a), and the corresponding layout (b).

(a)

Figure 9-32 Measured MMIC amplifier S-parameters: (a) magnitude, (b) S_{11} values displayed in Smith Chart, and (c) S_{22} values displayed in Smith Chart.

Figure 9-33 Stability factors determined from the S-parameter measurements: (a) Rollett stability factor, (b) μ -test.

Figure 9-34 Gain compression observed in power sweeps at (a) 850 MHz and (b) 1.95 GHz.

	850 MHz		1.95 GHz		
Parameter	Datasheet	Measured	Datasheet	Measured	
Insertion power gain $(S_{21} ^2)$	22 dB	22.1 dB	17 dB	16.6 dB	
Input return loss	9 dB	11.7 dB	11 dB	13.8 dB	
Output return loss	10 dB	17.2 dB	13 dB	8.4 dB	
Stability factor k	1.1	1.13	1.1	1.15	
Output power at 1 dB gain compression	21 dBm	20.3 dBm	20 dBm	19.9 dBm	

Table 9-9Comparison between the datasheet and network analyzer
measurements