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Figures for Chapter 1
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Figure 1-1 Block diagram of a generic RF system.
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Figure 1-2(a) Simplified circuit diagram of the first stage of a 2 GHz power
amplifier for a mobile phone.
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Printed circuit board layout of the power amplifier.
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Figure 1-3 Electromagnetic wave propagatlon in free space. The electnc and mag-
netic fields are shown at a fixed instance in time as a function of space (X, ¥ are unit
vectors in x- and y-direction).



Table 1-1

Frequency bands and their applications

Frequency Band Frequency Typical Application
VHF (Very High Frequency) 88 — 108 MHz FM broadcagtin
UHF (Ultrahigh Frequency) 824 — 894 MHz CDMA mobile phone servicg
810 — 956 MHz GSM mobile phone service
UHF (Ultrahigh Frequency) 2,400 MHz WLAN

SHF (Superhigh Frequency)

5,000 - 5,850 MHz

Unlicdridational
Information Infrastructure

SHF (Superhigh Frequency)

6,425 - 6,523 MHz

Cablevigibn Relay

SHF (Superhigh Frequency)

3,700 — 4,200 MHz

Geogstatiofixed satellite
service

X Band 8 -12.5 GHz Marine and airborne radar
Ku Band 12.5-18 GHz Remote sensing radar

K Band 18 — 26.5 GHz Radar

Ka Band 26.5-40 GHz Remote sensing radar
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Figure 1-4 Skin depth behavior of copper o, = 64.5 x 10° s/m, aluminum
o, = 40.0 x 10° s/m, gold Oy, = 48.5x 10° s/m, and typical solder

Oyoiger = 6.38x10° S/m.
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Figure 1-5(a) Schematic cross-sectional AC current density representation
normalized to DC current density.
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Figure 1-5(b) Frequency behavior of normalized AC current density for a copper
wire of radius a = 1 mm.
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Figure 1-6 The exact theoretical per-unit-length resistance as a function of
frequency for round wires of varying materials and radii. The dashed lines represent
the DC and skin depth based resistance approximations.



Figure 1-7 One- and quarter-watt thin-film chip resistors in comparison with a
conventional quarter-watt resistor.



Figure 1-8 Electric equivalent circuit representation of a high frequency resistor.



Figure 1-9 Electric equivalent circuit representation of a wire-
wound resistor at high frequency.
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Figure 1-10 Absolute impedance value of a 2000-Q thin-film resistor as
a function of frequency.
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Figure 1-11 Electric equivalent circuit of a capacitor at high frequency.
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Figure 1-12 Absolute value of the capacitor impedance as a func-
tion of frequency.
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Figure 1-13  Actual construction of a surface-mounted ceramic multilayer capacitor.



Figure 1-14 Distributed capacitance and series resistance in the inductor coil.



Figure 1-15 Equivalent circuit of the high-frequency inductor.
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Figure 1-16 Inductor dimensions of an air-core coil.
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Figure 1-17 Frequency response of the impedance of an RFC.



Table 1-2  Standard sizes of chip resistors

Geometry Size Code Length L, mils Width W, mils
0402 40 20
0603 60 30
0805 80 50
7 /W 1206 120 60
1812 120 180
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Figure 1-18 Cross-sectional view of a typical chip resistor.
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Figure 1-19 Cross section of a typical single-plate capacitor connected to the
board.
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Figure 1-20 Clusters of single-plate capacitors sharing a common dielectric
material.
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Figure 1-21 Typical size of an RF wire-wound air-core inductor (courtesy of Coil-
craft, Inc.).
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Figure 1-22 Flat coil configuration. An air bridge is made by using either a wire or a
conductive ribbon.
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Figure 1-23 Construction of a three-dimensional LTCC/HTCC module made out of
individual layers of ceramic tape that are collated, stacked, and fired (courtesy of
Lamina Ceramics Inc.).
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Figure 1-24 Impedance and quality factor behavior of a real, non-magnetic core in-
ductor as measured by the HP 4192A LCR meter.
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Figure 1-25 LCR meter with a plastic core torroidal inductor con-
nected to the test fixture and a measurement taken at 100 kHz.



