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Figures for Chapter 1

Figure 1-1 Block diagram of a generic RF system.
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Figure 1-2(a) Simplified circuit diagram of the first stage of a 2 GHz power 
amplifier for a mobile phone.
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Figure 1-2(b) Printed circuit board layout of the power amplifier.
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Figure 1-3 Electromagnetic wave propagation in free space. The electric and mag-
netic fields are shown at a fixed instance in time as a function of space (  are unit 
vectors in x- and y-direction).
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.
Table 1-1  Frequency bands and their applications

Frequency Band Frequency Typical Application

VHF (Very High Frequency) 88 – 108 MHz FM broadcasting

UHF (Ultrahigh Frequency) 824 – 894 MHz
810 – 956 MHz

CDMA mobile phone service
GSM mobile phone service

UHF (Ultrahigh Frequency) 2,400 MHz WLAN

SHF (Superhigh Frequency) 5,000 – 5,850 MHz Unlicensed National 
Information Infrastructure

SHF (Superhigh Frequency) 6,425 – 6,523 MHz Cable Television Relay

SHF (Superhigh Frequency) 3,700 – 4,200 MHz Geostationary fixed satellite 
service

X Band 8 – 12.5 GHz Marine and airborne radar

Ku Band 12.5 – 18 GHz Remote sensing radar

K Band 18 – 26.5 GHz Radar

Ka Band 26.5 – 40 GHz Remote sensing radar
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Figure 1-4 Skin depth behavior of copper  aluminum 
 gold  and typical solder 
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Figure 1-5(a) Schematic cross-sectional AC current density representation 
normalized to DC current density.
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Figure 1-5(b) Frequency behavior of normalized AC current density for a copper 
wire of radius a = 1 mm.
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Figure 1-6 The exact theoretical per-unit-length resistance as a function of 
frequency for round wires of varying materials and radii. The dashed lines represent 
the DC and skin depth based resistance approximations.
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Figure 1-7 One- and quarter-watt thin-film chip resistors in comparison with a
conventional quarter-watt resistor.



Figure 1-8 Electric equivalent circuit representation of a high frequency resistor.
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Figure 1-9 Electric equivalent circuit representation of a wire-
wound resistor at high frequency.
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Figure 1-10 Absolute impedance value of a 2000-Ω thin-film resistor as 
a function of frequency. 
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Figure 1-11 Electric equivalent circuit of a capacitor at high frequency.
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Figure 1-12 Absolute value of the capacitor impedance as a func-
tion of frequency.
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Figure 1-13  Actual construction of a surface-mounted ceramic multilayer capacitor.
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Figure 1-14 Distributed capacitance and series resistance in the inductor coil. 
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Figure 1-15 Equivalent circuit of the high-frequency inductor.
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Figure 1-16 Inductor dimensions of an air-core coil.
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Figure 1-17 Frequency response of the impedance of an RFC.
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Table 1-2  Standard sizes of chip resistors

Geometry Size Code Length L, mils Width W, mils

0402 40 20

0603 60 30

0805 80 50

1206 120 60

1812 120 180
L W



Figure 1-18 Cross-sectional view of a typical chip resistor.
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Figure 1-19 Cross section of a typical single-plate capacitor connected to the 
board.
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Figure 1-20 Clusters of single-plate capacitors sharing a common dielectric 
material.
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Figure 1-21 Typical size of an RF wire-wound air-core inductor (courtesy of Coil-
craft, Inc.).



Figure 1-22 Flat coil configuration. An air bridge is made by using either a wire or a 
conductive ribbon.
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Figure 1-23 Construction of a three-dimensional LTCC/HTCC module made out of 
individual layers of ceramic tape that are collated, stacked, and fired (courtesy of 
Lamina Ceramics Inc.).
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Figure 1-24 Impedance and quality factor behavior of a real, non-magnetic core in-
ductor as measured by the HP 4192A LCR meter.
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Figure 1-25 LCR meter with a plastic core torroidal inductor con-
nected to the test fixture and a measurement taken at 100 kHz.


