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@ Block Diagram of Radar System
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Definition - Radar Cross Section (RCS or o) 3.5

Scattered Field Eg

Incident Field E;

Transmitter

Figure by MIT OCW.
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(Unit: Area)

Radar Cross Section (RCS) is the hypothetical area, that would intercept the
incident power at the target, which if scattered isotropically, would produce
the same echo power at the radar, as the actual target.
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@ Factors Determining RCS

(Near-Field) Target, size, shape,
material, orientation

Polarization

Frequency

Scattering
Direction

(Monostatic) (Bistatic)
(Far-Field)
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Threat’s View of the Radar
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Outline

Radar cross section (RCS) of typical targets
— Variation with frequency, type of target, etc.

Physical scattering mechanisms and contributors to
the RCS of a target

Prediction of a target’s radar cross section
— Measurement
— Theoretical Calculation



Radar Cross Section of Artillery Shell

RCS vs. Aspect Angle of an Artillery Shell

Typical Artillery Shell

Radar Cross Section (dBsm)

Courtesy US Marine Corps

M107 Shell
for
155mm Howitzer
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Radar Cross Section of Cessna 150L
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Cessna 150L (in takeoff) Cessna 150L (in flight)

Scott Studio Photography with permission
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Aspect Angle Dependence of RCS

Cone Sphere Re-entry Vehicle (RV) Example

+20 dBm?
Reflectivity pattern J 0 dBm?

- -

Forward aspect /
o = 0.001 m? '

Figure by MIT OCW.

" Radar A sees 0.001 m?2 Radar B sees 0.75 m?
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@ Examples of Radar Cross Sections

Square meters

Conventional winged missile 0.1
Small, single engine aircraft, or jet fighter 1

Four passenger jet 2

Large fighter 6
Medium jet airliner 40
Jumbo jet 100
Helicopter 3

Small open boat 0.02
Small pleasure boat (20-30 ft) 2

Cabin cruiser (40-50 ft) 10

Ship (5,000 tons displacement, L Band) 10,000
Automobile / Small truck 100 - 200
Bicycle 2

Man 1

Birds (large -> medium) 10-2-10-3
Insects (locust -> fly) 104-10-

Adapted from Skolnik, Reference 2

Radar Cross Sections of Targets Span at least 50 dB
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Outline

Radar cross section (RCS) of typical targets
— Variation with frequency, type of target, etc.

Physical scattering mechanisms and contributors to
the RCS of a target

Prediction of a target’s radar cross section
— Measurement
— Theoretical Calculation



RCS Target Contributors

Inlet
/ - Body Shape
Exhaust [\
\ / L { ( - /Seeker
; s
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Control Surfaces

* Types of RCS Contributors
— Structural (Body shape, Control surfaces, etc.)
— Avionics (Altimeter, Seeker, GPS, etc.)
— Propulsion (Engine inlets and exhausts, etc.)
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@ Single and Multiple Frequency RCS
. Calculations with the FD-FD Technique

* RCS Calculations for a Single Frequency
— llluminate target with incident sinusoidal wave

— Sequentially in time, update the electric and magnetic fields, until
steady state conditions are met

— The scattered wave’s amplitude and phase can the be calculated

* RCS Calculations for a Multiple Frequencies
— Illluminate target with incident Gaussian pulse
— Calculate the transient response

— Calculate to Fourier transforms of both:
Incident Gaussian pulse, and
Transient response

— RCS at multiple frequencies is calculated from the ratios of these two
quantities
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Scattering Mechanisms
: for an Arbitrary Target

1y Diffraction at

4 Corner
Gap, Seam, or
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Measured RCS of C-29 Aircraft Model

1/12 Scale
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@ Outline

* Radar cross section (RCS) of typical targets
— Variation with frequency, type of target, etc.

* Physical scattering mechanisms and contributors to
the RCS of a target

* Prediction of a target’s radar cross section
===>» — Measurement
— Theoretical Calculation
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Theoretical Prediction
Scaled Model Measurements

Courtesy of MIT Lincoln Laboratory
Used with Permission
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Full Scale Measurements

Courtesy of MIT Lincoln Laboratory Target on Support

Used with Permission

* Foam column mounting
— Dielectric properties of Styrofoam close to those of free space

* Metal pylon mounting
— Metal pylon shaped to reduce radar reflections

— Background subtraction can be used
Derived from: http://www.af.mil/shared/media/photodb/photos/050805-F-0000S-003.jpg
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Full Scale Measurement of

RATSCAT Outdoor Measurement

Courtesy of MIT Lincoln Laboratory Facility at Holloman AFB

Used with Permission
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Compact Range RCS Measurement

Courtesy of U. S. Navy.
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Scale Model Measurement

N 5

Full Scale Scale Factor Subscale
Measure at frequency f S Measure at frequency S x F
Courtesy of MIT Lincoln Laboratory (Reduced Size)
Used with Permission
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Scaling of RCS of Targets

Scale Factor

Y

S
Quantity Full Scale Subscale
Length L L"=L/S
Wavelength A AN=AIS
Frequency f fF=Sf
Time t t'=t/S
Permittivity € £ =¢
Permeability v M =H
Conductivity g g=Sg
Radar Cross Section (o o' =0/8?
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Outline

Radar cross section (RCS) of typical targets
— Variation with frequency, type of target, etc.

Physical scattering mechanisms and contributors to
the RCS of a target

Prediction of a target’s radar cross section
— Measurement

mm=)> — Theoretical Calculation
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@ Radar Cross Section Calculation Methods 5.

‘ * Introduction
— Alook at the few simple problems

* RCS prediction

— Exact Techniques
Finite Difference- Time Domain Technique (FD-TD)
Method of Moments (MOM)
— Approximate Techniques
Geometrical Optics (GO)
Physical Optics (PO)
Geometrical Theory of Diffraction (GTD)
Physical Theory of Diffraction (PTD)

e Comparison of different methodologies
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@ Radar Cross Section of Sphere
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Rayleigh Region
A>>a
o=k/M\

Mie or Resonance
Region
Oscillations
Backscattered
wave interferes
with creeping wave

Optical Region
A<<a
c =7 a2
Surface and edge
scattering occur
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Radar Cross Section Calculation Issues

Three regions of wavelength

Rayleigh (A >> a)
Mie / Resonance (A ~ a)
Optical (A << a)

Other simple shapes
— Examples: Cylinders, Flat Plates, Rods, Cones, Ogives

— Some amenable to relatively straightforward solutions in some
wavelength regions

Complex targets:
— Examples: Aircraft, Missiles, Ships)

— RCS changes significantly with very small changes in frequency
and / or viewing angle

See Ref. 6 (Levanon), problem 2-1 or Ref. 2 (Skolnik) page 57

We will spend the rest of the lecture studying the different
basic methods of calculating radar cross sections
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@ High Frequency RCS Approximations

(Simple Scattering Features)

Scattering Feature Orientation Approximate RCS

Corner Reflector Axis of symmetry along LOS Am AL N

Flat Plate Surface perpendicular to LOS 4 A% [N

Singly Curved Surface Surface perpendicular to LOS At A%\

Doubly Curved Surface Surface perpendicular to LOS ma,a,

Straight Edge Edge perpendicular to LOS R

Curved Edge Edge element perpendicularto LOS @ A2

Cone Tip Axial incidence A’sin*(a/ 2)
Where: LOS = line of sight
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A_i = effective area contributing to multiple internal reflections

A = actual area of plate

a = mean radius of curvature; L = length of slanted surface

a, and a, = principal radii of surface curvature in orthogonal planes
L = edge length

a = radius of edge contour _ _
o = half angle of the cone Adapted from Knott is Skolnik Reference 3



@ Radar Cross Section Calculation Issues

Ra
R

d
d

ar Syste
adar Cros:

m:
s Se

s Course
ction 1/1/2010

Three regions of wavelength

Rayleigh (A >> a)
Mie / Resonance (A~ a)
Optical (A << a)

Other simple shapes
— Examples: Cylinders, Flat Plates, Rods, Cones, Ogives

— Some amenable to relatively straightforward solutions in some
wavelength regions

Complex targets:
— Examples: Aircraft, Missiles, Ships)

— RCS changes significantly with very small changes in frequency
and / or viewing angle

See Ref. 6 (Levanon), problem 2-1 or Ref. 2 (Skolnik) page 57

We will spend the rest of the lecture studying the different
basic methods of calculating radar cross sections

28



@ RCS Calculation - Overview

* Electromagnetism Problem

— A plane wave with electric field, E, , impinges on the target of
interest and some of the energy scatters back to the radar
antenna

E
~ |2
|

‘ 2

— Since, the radar cross section is given by: o =lim4nr®

r—>o0

— All we need to do is use Maxwell’s Equations to calculate the
scattered electric field E,

— That’s easier said that done

— Before we examine in detail these different techniques, let’s
review briefly the necessary electromagnetism concepts and
formulae, in the next few viewgraphs
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¢

* Source free region of space:

Maxwell’s Equations

* Free space constitutive relations:

D(¥,t) = E(F,1)
B(F,t) = p H(F,t)

ar Systems Course 30
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€, = Free space permittivity

U, = Free space permeability



@Maxwell’s Equations in Time-Harmonic Form (/.

* Source free region:

* Time dependence

E(F,t)= Re{E(F)e ™}
FI(F,t) = Re {A(F)e ™"
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@ Boundary Conditions

a

_ ,\ — — Surface
Medium 1 L, & N El H1 : Boundary

—

Medium 2 n, &, E2 H2

* Tangential components of E and H are continuous:
NXE, =nxE,
AnxH,=nxH,

* For surfaces that are perfect conductors:

NXE=0

e Radiation condition:

- As > ® E(F)oci
"
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@ Scattering Matrix

* For a linear polarization basis e Scattering Matrix - S

¢ = -
E\s r [Swv Sun]LEn
* The incident field polarization is related to the scattered field
polarization by this Scattering Matrix - S

2
cw=4n\sw\

2
Oy =4m ‘ SHH‘
2
Oy =4 ‘ SVH‘
* For and a reciprocal medium and for monostatic radar cross

section:
Orrs OLL:ORL

* For a circular polarization basis
Ovh = Ohv

Radar m
Radar Cross Section 1/1/2010



@ Radar Cross Section Calculation Methods

* Introduction
— Alook at the few simple problems

‘ * RCS prediction

— Exact Techniques
Finite Difference- Time Domain Technique (FD-TD)
Method of Moments (MOM)

— Approximate Techniques
Geometrical Optics (GO)
Physical Optics (PO)
Geometrical Theory of Diffraction (GTD)
Physical Theory of Diffraction (PTD)

e Comparison of different methodologies

Radar Systems Course 34
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Methods of Radar Cross Section

Calculation

RCS Method

Approach to Determine
Surface Currents

Finite Difference-
Time Domain (FD-TD)

Solve Differential Form of Maxwell’s
Equation’s for Exact Fields

Method of Moments

Solve Integral Form of Maxwell’s

(MoM) Equation’s for Exact Currents
Geometrical Optics Current Contribution Assumed to Vanish
(GO) Except at Isolated Specular Points
Physical Optics Currents Approximated by Tangent
(PO) Plane Method

Geometrical Theory of
Diffraction (GTD)

Geometrical Optics with Added Edge
Current Contribution

Physical Theory of
Diffraction (PTD)

Physical Optics with Added Edge
Current Contribution
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Finite Difference- Time Domain (FD-TD)
Overview

Exact method for calculation radar cross section

Solve differential form of Maxwell’s equations

— The change in the E field, in time, is dependent on the change in the H
field, across space, and visa versa

The differential equations are transformed to difference equations

— These difference equations are used to sequentially calculate the E
field at one time and the use those E field calculations to calculate H
field at an incrementally greater time; etc. etc.

Called “Marching in Time”

These time stepped E and H field calculations avoid the necessity
of solving simultaneous equations

Good approach for structures with varying electric and magnetic
properties and for cavities
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@

Maxwell’s Equations in
Rectangular Coordinates

0

e Examine 2 D problem - no y dependence: ~—=0

oy

* Equations decouple into H-field polarization and E-field

polarization

%, Iy, 0 9, 0 9
oy 9z at

0 —E, 0 —E, =v—uojzki
0z X ox ot
leY—lz+1-4;£1E
O X oy ot

* H-field polarization
HY EX EZ
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@ Maxwell’s Equations in

Rectangular Coordinates

0
* Examine 2 D problem — no ydependence: —=0

oy

e Equations decouple into H-field polarization and E-field
polarization

=( =
0 0 0 0 0 0
H,-—H,=¢,—E -—E,=-u,—H
Zyzz oz ' ot %’é oz ¥~ Moot
0 0 0 0 9, 0
—E,-——E,=-u,—H —H,—-—H_,=¢.—E
oz * ox 2 Mear''Y 6z X ox ¢ oot Y
iHY_%/ﬁngoiEZ iEY_Za'Z{Ex:_Moin
0 X ot O X y_ ot
=0 =0
* H-field polarization .

E-field polarization
H, Ex E; E, H, H,
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Discrete Form of Maxwell’s Equations

i e Hy Yee’s
H-field polarization: ® f ? f ® fEZ Lattice

- uoiHY(X,y,t)=%Ex(x,y,t) = = = (2-D)

ot ® A @ ®f Z
-2 &, (xy.t) :>f=>1=> @]_

0 X ® ® y
Discrete form: f ® f f
L H,| x, +—= zo+ﬁ,to+ﬁ -H,| x,+—= zo+ﬁ,to—ﬁ
2 2 2 2

_i EZ(XO+AX,ZO+A—22,toj_EZ(Xoizo +A—221t0j:|

Electric and magnetic fields are calculated alternately by the
marching in time method
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@ FD-TD Calculations and Absorbing
@ Boundary Conditions (ABC)

1st Order ABC 1 6_+6_ +
2\ 0z 0OX

Absorbing Boundary

. g
Scattered Field

’a Total Field

ETAN =0

Domam of Computation

2"d Order ABC
Layer Perfectly Matched Perfect Conductor [1 5?2 182 1 azj )
y

P +_ —_
cox ot c*ot® 20x°
* Absorbing Boundary Condition (ABC) Used to Limit Computational Domain

— Reflections at exterior boundary are minimized

— Traditional ABC’s model field as outgoing wave to estimate field quantities outside
domain

— More recent perfectly matched layer (PML) model uses non-physical layer, that
absorbs waves

Radar Systems Course 40
Radar Cross Section 1/1/2010



@ RCS Calculations Using the FD-TD Method
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Single frequency RCS calculations
— Excite with sinusoidal incident wave
— Run computation until steady state is reached
— Calculate amplitude and phase of scattered wave

Multiple frequency RCS calculations
— Excite with Gaussian pulse incident wave
— Calculate transient response

— Take Fourier transform of incident pulse and transient
response

— Calculate ratios of these transforms to obtain RCS at multiple
frequencies

From Atkins, Reference 5
Courtesy of MIT Lincoln Laboratory
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Description of Scattering Cases on Video

Finite Difference Time Domain (FDTD) Simulations

Case 1 —Plate |

=

Case 2 — Plate Il

E.

——1 15 deg

Case 4 — Cylinder |

b
2

Courtesy of MIT Lincoln Laboratory Used with Permission
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Case 3 — Plate lll

——1 15deg

Case 5 — Cylinder Il

o
7

Case 6 — Cavity
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FD-TD Simulation of Scattering by Strip

Case 1

Courtesy of
MIT Lincoln Laboratory
Used with Permission

« Gaussian pulse plane wave incidence
» E-field polarization (Ey plotted)
« Phenomena: specular reflection

0.5m
E ®:b
Y T

\/
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FD-TD Simulation of Scattering by Strip

Case 1

Courtesy of
MIT Lincoln Laboratory
Used with Permission
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FD-TD Simulation of Scattering by Cylind

Case 5

Courtesy of
MIT Lincoln Laboratory
Used with Permission
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 Gaussian pulse plane wave incidence

» H-field polarization (Hy plotted)
* Phenomena: creeping wave

0.5m
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FD-TD Simulation of Scattering by Cylinde#

Case 5

Courtesy of
MIT Lincoln Laboratory
Used with Permission
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Backscatter of Short Pulse from Sphere

ﬂ-q...__, Specular Return
ol)% =314

Specular
Return

44—

- Creeping Wave Return
o /3% =0.059

7/
4— e
Creeping Wave Return

o

L Radius of sphere is equal

_ to the radar wavelength
| J Figure by MIT OCW.

0 2 4 6 8 10

Electric Field (arbitrary units)

Distance (Sphere radii)
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