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Outline

• Motivation

• Backscatter from unwanted objects 

– Ground

– Sea

– Rain

– Birds and Insects



Radar Systems Course    4
Clutter  11/1/2009

IEEE New Hampshire Section
IEEE AES Society

Attributes of Rain Clutter

• Rain both attenuates and reflects radar signals

• Problems caused by rain lessen dramatically with longer 
wavelengths (lower frequencies)

– Much less of a issue at L-Band than X-Band

• Rain is diffuse clutter (wide geographic extent)
– Travels horizontally with the wind
– Has mean Doppler velocity and spread

Transmitted Electromagnetic Wave

Reflected Electromagnetic Wave

Rain drop

Courtesy of MIT Lincoln Laboratory
Used with Permission
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10 nmi Range Rings on PPI 
Display

August 1975,  FAA Test 
Center

Atlantic City, New Jersey

PPI Display Radar Normal Video

Airport Surveillance Radar
S Band

Detection Range -

 

60 nmi on 
a 1 m2

 

target

Clear Day (No Rain)

Courtesy of FAA
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10 nmi Range Rings on PPI 
Display

August 1975,  FAA Test 
Center

Atlantic City, New Jersey

PPI Display Radar Normal Video

Airport Surveillance Radar
S Band

Detection Range -

 

60 nmi on 
a 1 m2

 

target

Clear Day (No Rain)

10 nmi Range Rings on PPI 
Display

August 1975,  FAA Test 
Center

Atlantic City, New Jersey

Day of Heavy Rain

Courtesy of FAA Courtesy of FAA
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Reflectivity of Uniform Rain
 (σ

 
in dBm2/m3)

• Rain reflectivity increases as f 4  (or 1 / λ4)

– Rain clutter is an issue at S-Band and a significant one at 
higher frequencies

Figure by MIT OCW.
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Effect of Circular Polarization 
on Rain Backscatter

• Assumption: Rain drops are spherical
• Circular polarization is transmitted (assume RHC),

– Reflected energy has opposite sense of circular polarization (LHC)
• Radar configured to receive only the sense of polarization that is 

transmitted (RHC)
– Then, rain backscatter will be rejected (~ 15 dB)

• Most atmospheric targets are complex scatterers and return both 
senses of polarization; equally (RHC & LHC)

– Target echo will be significantly attenuated

Transmitted Electromagnetic Wave
Right Handed Circular (RHC)

Reflected Electromagnetic Wave
Left Handed Circular (LHC)

Rain drop

Phase change 
at reflection 

point in 
raindrop



Radar Systems Course    9
Clutter  11/1/2009

IEEE New Hampshire Section
IEEE AES Society

Attenuation in Rain

Adapted from Skolnik, Reference 6

Rainfall Characterization
Drizzle –

 

0.25 mm/hr
Light Rain –

 

1 mm/hr
Moderate Rain –

 

4 mm/hr
Heavy Rain –

 

16 mm/hr
Excessive rain –

 

40 mm/hr

In Washington DC
0.25 mm/hr exceeded 450 hrs/yr

1 mm/hr exceeded 200 hrs/yr
4 mm/hr exceeded 60 hrs/yr

16 mm/hr exceeded 8 hrs/yr
40 mm/hr exceeded 2.2 hrs/yr0.25 mm/hr
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Reflectivity vs. Frequency
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Reflectivity of Uniform Rain
 (σ

 
in dBm2/m3)
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Heavy Uniform Rain –
 Backscatter Coefficient

*

 

Theoretical Rainfall Rate

11,000 ft

 

Altitude

7 dB

21.5Slant Range, nmi

1.75 nmi

4.0

40 mm*/hr

10 mm*/hr

3 dB

9 dB

0.2 nmi

2.2 dB
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C Band
Azimuth 336°
Elevation 34°
Pulse Width

0.2 μsec

Adapted from Nathanson, Reference 3
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Measured S-Band Doppler Spectra of Rain
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was approximately 20 mm/hr
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Effects of Wind Shear on the
 Doppler Spectrum

Adapted from Nathanson, Reference 3
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Nathanson Rain Spectrum Model

• Nathanson model for velocity spread of rain
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Outline

• Motivation

• Backscatter from unwanted objects 

– Ground

– Sea

– Rain

– Birds and Insects
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Bird Clutter

• General properties

• Bird populations and density
– Migration / Localized travel

 Land / Ocean
– Variations 

 Geography, Height, Diurnal, Seasonal etc 

• Radar Cross Section
– Mean / Fluctuation properties

• Velocity / Doppler Distribution

• Effects of Birds on radar
– Sensitivity Time Control (STC)
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General Properties of Birds

• Good RCS model for bird
– Flask full of salt water
– Expanding and contracting body, at frequency of wing 

beat, is the dominant contributor to individual bird radar 
cross section fluctuations

• Since many birds are often in the same range-azimuth 
cell, the net total backscatter is the sum of contribution 
from each of the birds, each one moving in and out of 
phase with respect to each other.

Erlenmeyer Flask Snow Goose Sea Gull

Courtesy of pbonenfant Courtesy of jurvetson 
Courtesy of tk-link 



Radar Systems Course    19
Clutter  11/1/2009

IEEE New Hampshire Section
IEEE AES Society

General Properties of Birds

• Since birds move at relatively low velocities, their speed, if 
measured, can be used to preferentially threshold out the low 
velocity birds.

– Direct measurement of Doppler velocity
– Velocity from successive measurement of spatial position

 Range and angle
• Even though the radar echo of birds is relatively small, birds can 

overload a radar with false targets because:
– Often bird densities are quite large, and
– Bird cross sections often fluctuate to large values.

• A huge amount of relevant research has been done over the last 
20 years to quantify:

– The populations of bird species, their migration routes, and bird 
densities, etc., using US Weather radar data (NEXRAD)

– Major Laboratory efforts over at least the last 20 years at Clemson 
University and Cornell University
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Bird Clutter

• General properties

• Bird populations and density
– Migration / Localized travel

 Land / Ocean
– Variations 

 Geography, Height, Diurnal, Seasonal etc 

• Radar Cross Section
– Mean / Fluctuation properties

• Velocity / Doppler Distribution

• Effects of Birds on radar
– Sensitivity Time Control (STC)
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Bird Breeding Areas and Migration Routes

Virginia RailNorthern FlickerGadwall

Along the Gulf Coast, during the breeding season, wading and sea

 

bird colonies exist 
that have many tens of thousands of birds. Ten thousand birds are quite common. 
These birds are large; weighing up to 2 lbs and having wingspreads from 1 to  6 feet.

Figure by MIT OCW.

Photos courtesy of vsmithuk, sbmontana, and khosla.
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Bird Breeding Areas and Migration Routes

Northern HarrierBlack TernSpotted Towhee

Figure by MIT OCW.

Photos courtesy amkhosla, Changhua Coast Conservation Action, and amkhosla.

In the lower Mississippi Valley, over 60 blackbird roosts have been identified with 
greater than 1 million birds each. Many smaller roosts also exits. These birds disperse 
several tens of miles for feeding each day.
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Density of Migrating North American Birds
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Adapted from Pollon, reference 7

Data Characteristics
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1209 Observations
~3000 Count-hours
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4 October 1952
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Migratory Bird Patterns 
(Off the US New England Coast)

Bird migrations have been tracked by radars from the 
Northeast United States to South America and the 
Caribbean have on Bermuda at altitudes of 17 kft

Direction of Bird Migration

Circles note coverage 
of 2 radars, one at tip 
of Cape Cod, the 
other, offshore on a 
“Texas tower”

Adapted from Eastwood reference 8
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Bird Migration across the Mediterranean Sea

Spring
Autumn

45°

10°W 0° 10°E 20°E 30°E

35°

600 nmi.

For about 2 1/2 months in the Spring and Autumn, 
there is heavy bird migration, to and from, Europe 

and AfricaAdapted from Eastwood
reference 8
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Altitude Distribution of Migrating Birds

1

2

3

4

5

6

7

0

H
ei

gh
t (

ft 
x 

10
00

)

0          2          4          6         8         10        12
Percent of Birds Detected

Nocturnal Migrating Birds
Bushy Hill, England
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Altitude distributions differ for 
migrating and non-migrating 
birds

The presence of cloud cover effects 
the bird height distribution

Distance of their migration can 
influence migration altitude (NE 
United States to South America)

Over land vs. over sea migration

Day vs. night migration                 

Non-migrating birds stay closer to 
the ground

Adapted from Eastwood, reference 8
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Example of “Ring Roost”
 

Phenomena

• Radar observations with S-Band, WSR-88 (NEXRAD) NOAA, 
Pencil Beam Radar located at Green Bay, Wisconsin

“Ring Roosts”

 

are flocks of birds 
leaving their roosting location for 
their daily foraging for food just 

before sunrise

Data collected on August 10, 2006
5:25 to 6:15 AM

About 50 minutes of data is 
compressed into ~1.5 sec duration

and replayed in a loop 

Note intensity scale in dBZ

Courtesy of NOAA
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Spring Bird Migration from Cuba to US

• Radar observations with S-Band, WSR-88 (NEXRAD) NOAA, 
Pencil Beam Radar located at Key West, Florida

Data collected on April 28, 2002
~1 -

 

3 AM

About 2 hours of data is 
compressed into ~3 sec duration

and replayed in a loop 

Note intensity scale in dBZ
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Bird Clutter

• General properties

• Bird populations and density
– Migration / Localized travel

 Land / Ocean
– Variations 

 Geography, Height, Diurnal, Seasonal etc 

• Radar Cross Section
– Mean / Fluctuation properties

• Velocity / Doppler Distribution

• Effects of Birds on radar
– Sensitivity Time Control (STC)
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Bird RCS Measurements

• In the late 1960s, Konrad, Hicks, and Dobson of JHU/APL 
accurately measured the radar cross section (RCS) of 
single birds and the RCS fluctuation properties.

– Bird RCS fit a log-normal quite well
– Like the Weibull distribution, it is a 2 parameter model that 

fits data with long tails 
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SparrowS-Band
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NASA Radar Facility
Wallops Island, VA

UHF , S-Band and X-Band Radars

Adapted from Konrad, reference 12

Courtesy of MIT Lincoln Laboratory
Used with Permission
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Summary of Measured Bird Cross Section* Data

Grackle (male)          15.7             27              0.73

Grackle (female)
 
15.4

 
23.2

 
0.41

Sparrow                    1.85
 

14.9
 

0.025

Pigeon
 

14.5
 

80.0
 

10.5

X-Band S-Band UHF

Adapted from Konrad, reference 12

Units of RCS measurement    cm2



Radar Systems Course    32
Clutter  11/1/2009

IEEE New Hampshire Section
IEEE AES Society

Distribution of Bird Radar Cross Section
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Radar Cross Section Model

• Wavelength dependence
• Fluctuation statistics of cross section (log normal)

Mean
 

Standard Deviation of
 Cross Section

 
Log of Cross Section

 Wavelength
 

(dBsm)
 

(dB)

X
 

–33
 

6

S
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6
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–28 7.5
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–47
 

15
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–57
 

17

Adapted from Pollon,  Reference 7
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Bird Clutter

• General properties

• Bird populations and density
– Migration / Localized travel

 Land / Ocean
– Variations 

 Geography, Height, Diurnal, Seasonal etc 

• Radar Cross Section
– Mean / Fluctuation properties

• Velocity / Doppler Distribution

• Effects of Birds on radar
– Sensitivity Time Control (STC)
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Distributions of the Radial Velocity of Birds
Fr

eq
ue

nc
y 

of
 O

cc
ur

re
nc

e

Fr
eq

ue
nc

y 
of

 O
cc

ur
re

nc
eL-Band

X-Band

Radial Velocity (m/sec) Radial Velocity (m/sec)

0        5.7      11.4     17.1     22.8     28.5 0        5.7      11.4     17.1     22.8     28.5

0.05 0.05

0.15
0.10

0.10

0.15 0.20

0.20

00

0.25

0.30



Radar Systems Course    36
Clutter  11/1/2009

IEEE New Hampshire Section
IEEE AES Society

Bird Clutter

• General properties

• Bird populations and density
– Migration / Localized travel

 Land / Ocean
– Variations 

 Geography, Height, Diurnal, Seasonal etc 

• Radar cross section
– Mean / Fluctuation properties

• Velocity / Doppler distribution

• Effects of birds on radar
– Sensitivity Time Control (STC)
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Why Birds Are an Issue for Radars
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Sensitivity Time Control

• These two targets have the same detectability, because in 
the radar equation:

• This false target issue can be mitigated by attenuating to 
the received signal by a factor which varies as 1/R4

– Can also be accomplished by injecting 1/R4

 

noise to the  
receive channel

• Radars that utilize range ambiguous waveforms, cannot 
use STC, because long range targets which alias down in 
range, would be adversely attenuated by the STC

– For these waveforms, other techniques are used to mitigate 
the false target problem due to birds

Bird at 89 nmi, RCS = 0.0015 m2

Aircraft at 200 nmi, RCS = 1 m2

4RN
S σ
∝
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Bird Example from Dallas-Fort Worth

Radar & Beacon
Beacon-Only
Radar Uncorrelated
Radar Correlated

Courtesy of MIT Lincoln Laboratory
Used with Permission
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Bird Clutter Issues -
 

Summary

• Birds are actually moving point targets
– Velocity usually less than 60 knots

• Mean radar cross section is small, but a fraction of bird 
returns fluctuate up to a high level (aircraft like) 

– Cross section is resonant at S-Band and L-Band

• The density of birds varies a lot and can be quite large 
– 10 to 1000 birds / square mile

• Birds cause a false target problem in many radars
– This can be a significant issue for when attempting to detect 

targets with very low cross sections

Courtesy of MIT Lincoln Laboratory
Used with Permission
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Insects

• Insects can cause false 
detections and prevent 
detection of desired targets

• Density of insects can be many 
orders of magnitude greater 
than that of birds

• Insect flight path generally 
follows that of the wind

• Cross section can be 
represented as a spherical drop 
of water of the same mass

• Insect echoes broad side are 10 
to 1,000 times than when 
viewed end on

Figure by MIT OCW. Adapted from Skolnik Reference 6 
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Mayfly Hatching

• Radar observations with S-Band, WSR-88 (NEXRAD) NOAA, 
Pencil Beam Radar located at La Crosse, Wisconsin (SW WI)

Data collection -

 

June 30, 2006

La Crosse is the breeding ground 
of the mayfly population of the 

world

~10s of billions of them hatch, 
live, and die, over a 1 ½

 

day 
period, each year in late June / 

early

 

July

Mississippi River

Ephemeroptera (mayfly) 

Courtesy of National Weather Service 
Courtesy of urtica 
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Summary

• A number of different types of radar clutter returns have 
been described

– Ground, sea, rain, and birds

• These environmental and manmade phenomena will 
produce a variety of discrete and diffuse, moving and 
stationary false targets, unless they are dealt with 
effectively

• A number of signal and data processing techniques can be 
used to suppress the effect of these radar clutter returns.
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Homework Problems

• From Skolnik, Reference 6

– Problems 7-2, 7.4, 7.9, 7.11, 7.15, and 7.18 
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