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Chapter V MoM Approach to a Metal Antenna 
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 5.1. Basis functions for a metal structure 
The Rao-Wilton-Glisson (RWG) basis functions [1] on triangles are used in the present 

study. The basis function in Fig. 5.1 includes a pair of adjacent (not necessarily co-

planar) triangles and resembles a small spatial dipole with linear current distribution 

where each triangle is associated with either positive or negative charge. 

 

 
 

Fig. 5.1. RWG basis with two adjacent triangles [1]. 

 

Below, we recall some properties of the most common basis functions. For any two 

triangular patches, +
nt  and −

nt , having areas +
nA  and −

nA , and sharing a common edge nl , 

the basis function becomes 
 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=
−−

−

++
+

nn
n

n

nn
n

n

M
n

tr
A
l

tr
A
l

rf
in

2

in
2)(

rr

rr

rr

ρ

ρ
            (5.1) 

and 
 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−
=⋅∇

−
−

+
+

n
n

n

n
n

n

M
n

tr
A
l

tr
A
l

rf
in

in
)(

r

r

rr
            (5.2)  

 



Updated July 31st, 2005 
 

 V-3

where ++ −= nn rr rrr
ρ  is the vector drawn from the free vertex of triangle +

nt  to the 

observation point rr ; rrnn
rrr

−= −−ρ  is the vector drawn from the observation point to the 

free vertex of triangle −
nt . The basis function is zero outside the two adjacent triangles +

nt  

and −
nt . The RWG vector basis function is linear and has no flux (that is, has no normal 

component) through its boundary.  

 

5.2. MoM equations for a metal structure 

a. Scattering problem 

Scattering or radiation problems are essentially identical – the only difference is that the 

“incident” field for the driven antenna is the applied electric field in the feed. Therefore, 

only the scattering problem is considered here. The total electric field is a combination of 

the incident field (labeled by superscript i) and the scattered field (labeled by superscript 

s), i.e. 

 
si EEE
rrr

+=               (5.3)  

 

The incident electric field is either the incoming signal (scattering problem) or the 

excitation electric field in the antenna feed (radiation problem). The scattered electric 

field sE
r

 is due to surface currents and free charges on the metal surface S (the so-called 

mixed-potential formulation) [2] 
 

SrrrAjE MM
s on )()( rrrrr

Φ∇−−= ω            (5.4) 

 

Herein the index M denotes the metal-surface related quantities. The magnetic vector 

potential )(rAM
rr

 describes surface current radiation whereas the electric potential 

)(rM
r

Φ describes radiation of surface free charges. In the far field, both the Φ -

contribution and the A
r

-contribution are equally important. On the metal surface S, the 

tangential component of the total electric field vanishes, 0tan =E
r

, thus giving the electric 

field integral equations (EFIE) [1, 2] 
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( ) SrjE MM
i on tantan
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b. Test functions 

Assume that the test functions, )(rf M
m

rr
 m = 1… NM, cover the entire surface S and 

do not have a component normal to the surface. Multiplication of Eq. (5.5) by S
mf
r

 and 

integration over S gives NM equations 
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since, according to the Stokes theorem, 
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if M
mf
r

 does not have a component perpendicular to the surface boundary or edge (if any). 

c. Source functions 

The surface current density, MJ
r

 is expanded into the basis functions (which usually 

coincide with the test functions) in the form  
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The magnetic vector potential has the form [2] 

 

∫ ′=Α
S

MM sgdJr
rrr

π
μ
4

)( 0             (5.9) 

where 0μ  is the permeability in vacuum and ',/)exp( rrRRjkRg rr
−=−=  is the free-

space Green’s function (time dependency tjωexp( ) is assumed everywhere). In the 

expression for the Green’s function rr  is the observation (test) point and 'rr  is the 
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integration (source) point; both of them belong to the metal surface. After substitution of 

the expansion Eq. (5.8), the above equation becomes 
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Similarly, the electric potential has the form [2] 
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It follows from equation (5.11) that sσ  can be expressed in terms of the current density, 

through the surface divergence. Hence the electric vector potential reduces to 
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d. Moment equations 

The moment equations are obtained if we substitute expansions (5.10) and (5.12) into the 

integral equation (5.6). In terms of symbolic notations, 
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are the “voltage” or excitation components for every test/basis function that have units 

V⋅m. The integral expressions are the components of the impedance matrix MMẐ of size 

(NM x NM), 
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Note that the impedance matrix is symmetric for any set of basis functions (test functions 

should be the same) when the corresponding surface integrals are calculated precisely. 

The components of the impedance matrix are the double surface integrals of the Green’s 

function and they mostly reflect the geometrical interaction between the “dipole” RWG 

basis functions of the problem. In matrix form, Eq. (5.15) becomes 

 

υ
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=IZ MMˆ             (5.16)  

 

Substitution of Eqs. (5.1),  (5.2) into Eq. (5.15) gives the components of the impedance 

matrix in terms of surface RWG basis functions in the form 
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5.3. Integral calculation 

a. Base integrals 

About 90% of the CPU time required for the filling of the MoM impedance matrix MMẐ  

for the RWG basis functions is spent for the calculation of the surface integrals presented 

in equations (5.17), (5.18). Consider a structure where all triangular patches are 

enumerated by Pp ,...,1= . Then, every integral in equation (5.17) is built upon the term 
 

( ) 3,2,1,,...,1,)( ==′′−′⋅= ∫ ∫ jiPqpdssdrrgA
p qt t

ji
ij

pqM
rrrrr

ρρ      (5.19) 

 

Here, ii rr rrr
−=ρ  for any vertex i of patch p whereas jj rr rrr

−= ''ρ  for any vertex j of patch 

q. Similarly, every integral in equation (5.18) is built upon the term 
   

Pqpdssdrrg
p qt t

pqM ,...,1,)( =′′−=Φ ∫ ∫
rr

        (5.20) 

 

The integrals (5.19) and (5.20) can be found in a number of ways.  

b. Singularity extraction 

The singularity of the free-space Green’s function is integrable in 2D, but the accuracy of 

the Gaussian formulas is reduced if this singularity is retained. Therefore, singularity 

extraction may be used in Eqs. (5.19), (5.20), in the form 
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The two first singular integrals on the right-hand side of Eqs. (5.21), (5.22) (the so-called 

potential or static integrals) may be found with the help of the analytical results given in 

[3]. The double self-integrals are evaluated analytically in [4]. 
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c. Analytical calculation of potential integrals [3] 

Strictly speaking, the integration-by-parts approach of Ref. [3] allows us only to find the 

inner potential integral presented in Eqs. (5.21), (5.22). The outer integrals will still be 

found numerically, using the Gaussian cubatures [5]. Fig. 5.2, which is given for one 

triangle edge and the observation point, is useful in visualizing many variables needed to 

find the potential integrals using the analytic formulas. This figure and the corresponding 

integration formulas are adopted from Ref. [3]. Here, ρ
r

 is the projection vector of the 

observation point rr  onto the triangle plane, 'ρ
r

 is the projection vector of the integration 

point 'rr  onto the triangle plane, and R is the distance between the integration point and 

the observation point, i.e. rrR rr
−= ' . 

 

Fig. 5.2. Geometric representation of the variables in the analytical formulas [3] (© 1984 

IEEE). 

 

Below, we briefly review the related results of [3]. The analytic formula for the inner 

(potential) integral on the right-hand side of Eq. (5.22) has the following form:  
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The summation is made over the three edges of the triangle. Here, )(ρα
r

 is the angle 

factor and is either 0 or 2π depending on whether the projection of the observation point 

is outside the triangle or inside the triangle, respectively. The quantity d  is the height of 

the observation point above the plane of triangle t, measured positively in the direction of 

the triangle normal vector nr . The quantity d is calculated by )( +−⋅= irrnd rrr , where +
ir
r  

is a given position vector to the “upper” endpoint of edge 3,2,1, =ili . The upper 

endpoint is labeled with symbol “+”. Triangle unit normal nr  is the cross product of side 

1 and side 2 vectors of the triangle, where numbering the sides is arbitrary as long as it is 

consistent for each iteration of the formula. Alternatively, −
ir
r , a given position vector to 

the “lower” endpoint of edge 3,2,1, =ili , can be used in the equation for d instead of +
ir
r . 

The perpendicular vector from the endpoint of vector ρ
r

 in Fig. 5.2 to the edge 

3,2,1, =ili  or its extension is given by 0
0 )()(

i

iii
i

ll
Ρ

−−
=Ρ

±±
rrrr ρρ

 , where ±
iρ
r  are the 

vectors from point Q to the endpoints of the edge, which are equal to )( ±± ⋅− ii rnnr rrrr . il
r

 is 

the edge vector and is equal to 
−+

−+

−

−

ii

ii

rr
rr
rr

rr

 (see Fig. 5.2). The endpoints of il
r

are 

associated with distances iii ll
rrr
⋅−= ±± )( ρρ  (see Fig. 5.2). The distance from the endpoint 

of vector ρ
r

 in Fig. 5.2 to the edge 3,2,1, =ili  or its extension is given by 

ii ur
rr
⋅−=Ρ ± )(0 ρρ  (the proper sign must be taken into account). The vector iur  is the unit 

outer normal to the edge and is equal to nli
rr

× . Distances measured from ρr  to ±
iρ
r  are 

( ) ( )220 ±±± +Ρ=−=Ρ iiii lρρ
rr . The two quantities ( ) 22 dR ii +Ρ= ±± are the 

distances measured from the observation point to the endpoints of the edge (see Fig. 5.2). 

This completes the list of variables presented in Eq. (1.5). 
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 The inner integral in Eq. (5.21) is similar to that in Eq. (5.22) except that it is 

multiplied by jρ′
r . This gives a vector-valued integral. The corresponding analytic 

formula given in [3] provides the integral 
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where subscript tan denotes the vector projection onto the triangle plane, 

( ) 2200 dR ii +Ρ=  is the distance measured from the observation point to the point 

intersected by 0
iΡ
r

and l
r

. The remaining variables are the same as in Eq. (5.23). The inner 

integral on the right-hand-side of Eq. (5.21) is then obtained as a combination of (5.23) 

and (5.24), i.e., 
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5.4. Fields 

a. Scattered electric field 

Once the MoM solution is known, the scattered (or radiated) electric field is given by Eq. 

(5.4) 
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where nI  is the MoM solution for surface current density.  
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a. Scattered magnetic field 

The scattered magnetic field created by a metal structure is given by the curl of the 

magnetic vector potential, i.e. 
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M
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4
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5.5. Method of calculation of the impedance matrix MMẐ  and the radiated/scattered 

fields 

a. Impedance matrix 

A “neighboring” sphere of dimensionless radius R is introduced for every integration 

facet. The radius R is a threshold value for the ratio of distance to size. The size of the 

facet qt , ( )qtS , is measured as the distance from its center to the furthest vertex. The 

observation triangle pt  lies within the sphere if the following inequality is valid for the 

distance d between two triangle centers 

 

R
tStS

d

qp

<
)()(

         (5.28) 

 

If a pair of triangles satisfies (5.28), then the integrals (5.19) and (5.20) use the  

singularity extraction (5.21), (5.22) and the analytical formulas (5.23)-(5.25) for the inner 

potential integrals. The non-singular part and the outer potential integrals employ 

Gaussian cubatures given in [5]. Each cubature is characterized by two numbers: N, the 

number of integration points; and d, the degree of accuracy for the Gaussian cubature 

formula. If a pair of triangles does not satisfy Eq. (5.28), then the central-point 

approximation is used for all integrals, without singularity extraction.  

The parameter R is initialized in the script metal.m in subfolder 

2_basis\codes. The same is valid for N and d for the Gaussian formulas. The default 

values are 5=R  and 2,3 == dN . The necessary potential integrals on the right-hand 



Updated July 31st, 2005 
 

 V-12

sides of Eqs. (5.21), (5.22) are pre-calculated in structure geom and are saved in the 

sparse matrix format.  

b. Fields 

The same operation as for the impedance matrix is done for the field integrals (5.26) and 

(5.27) but Eq. (5.28) is now replaced by 
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            (5.28) 

 

Within the sphere, one more potential integral appears, of the form [6] 
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and the variables are the same as in Eqs. (5.23) and (5.24). 

The parameter R is initialized in the script field.m in subfolder 3_mom\codes. 

The default value is 2=R . The N and d for the Gaussian formula are defined as 

5,7 == dN  in the script fieldm.cpp. Outside the sphere, the central-point 

approximation is used. For the far-field approximation, 0→R  is an acceptable 

approximation.  

 

5.6. List of available Gaussian integration formulas on triangles  

 

Some Gaussian integration formulas on triangles [5] are given in the script tri.m in 

subfolder 2_basis\codes. The formulas given in Table 5.1 were used and tested. Each 

cubature is characterized by two numbers: N is the number of integration points and d is 

the degree of accuracy for the Gaussian cubature formula.  
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Table 5.1. List of available/tested Gaussian formulas on triangles [5].  

 

Formula N d 
#1 1 1 
#2 3 2 
#3 4 3 
#4 6 3 
#5 7 5 
#6 9 5 
#7 13 7 
#8 25 10 

 

Also, the barycentric triangle subdivision of arbitrary degree of subdivision is available in the 

script tri.m. 

 

5.7. Summary of numerical operations and associated MATLAB/C++ scripts  

 

The summary of numerical operations related to a metal antenna/resonator/scatterer is 

given in Table. 5.2. The same summary but for a metal resonator is given in Table 5.3. 

The difference between the two cases is mostly in the antenna feed. 

 

Table 5.2. Antenna-related numerical operations. 

Antenna operations 
Operation Script Path Remarks 

Determine the metal 
structure 

struct2d.m 
struct3d.m 

1_mesh Remove all tetrahedra from the 
mesh while running struct3d.m. 
Do not use 1=rε . 

Determine the 
antenna feed 
location 

feed.m 
(obsolete; 
combined 
with 

struct3d) 

1_mesh The feed edges are found as the 
closest ones to the array POINTS. 
The number of feeding edges in the 
feed can be arbitrary. 

 
Determine 
parameters of the 
RWG basis 
functions 

wrapper.m 2_basis Outputs structure geom with all the 
necessary data on the basis 
functions/precalculated potential 
integrals 

Determine accuracy 
of impedance matrix 
filling – optional  

metal.m 2_basis\
codes 

The parameter R is initialized in the 
script metal.m in subfolder 
2_basis\codes. The same is 
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(see Section 5.5) valid for N and d for the Gaussian 
formulas. The default values are 

5=R  and 2,3 == dN . The 
necessary potential integrals are 
pre-calculated in structure geom 
and are saved in the sparse matrix 
format. 

Determine the 
antenna feed type 

impedance.m 3_mom Voltage gap is the default. Can be 
modified if necessary. 

Determine the 
antenna input 
impedance and feed 
power (loop)  

impedance.m 3_mom Saves MoM solutions obtained at 
every frequency step in out.mat. 

Determine radiation 
patterns (co-
polar/cross-polar 
polarization, RHCP, 
LHCP) 

radpattern.m 3_mom Should be run after impedance.m. 
Radpattern.m uses the MoM 
solution obtained previously in 
order to compute the far fields. 
Radpattern.m finds the far field 
at a given frequency that needs to 
be specified.  

Determine 
charge/current 
distribution on the 
metal surface 

nearfield.m 3_mom Should be run after impedance.m. 
nearfield.m uses the MoM 
solution obtained previously in 
order to compute the current/charge 
distributions at a given frequency 
(which needs to be specified).  

 

Table 5.3. Resonator-related numerical operations. The feed (or feed column) does not 

have to be specified.  

Resonator operations 
Operation Script Path Remarks 

Determine the metal 
structure 

struct2d.m 
struct3d.m 

1_mesh Remove all tetrahedra from the 
mesh while running struct3d.m. 
Do not use 

1=rε . 
Determine 
parameters of RWG 
basis functions 

wrapper.m 2_basis Outputs structure geom with all 
necessary data on the basis 
functions/precalculated potential 
integrals 

Determine accuracy 
of impedance matrix 
filling –optional  

metal.m 2_basis\
codes 

The parameter R is initialized in the 
script metal.m in subfolder 
2_basis\codes. The same is 
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(see Section 5.5) valid for N and d for the Gaussian 
formulas. The default values are 

5=R  and 2,3 == dN . The 
necessary potential integrals are 
pre-calculated in structure geom and 
are saved in the sparse matrix 
format. 

Determine 
eigenfrequency/Q-
factor 

eigenfreq.m 3_mom Fully interactive interface. Will not 
run if the antenna feed is specified.  

Determine 
charge/current 
distribution on the 
metal surface in the 
resonant mode 

scatterfield.
m 

3_mom Should be run after eigenfreq.m. 
scatterfield.m. Illuminates the 
resonator by an incident plane wave 
at the resonant frequency and finds 
the current/charge distributions at 
that given frequency  

 

The independent scattering problem may be also considered, by running 

scatterfield.m at a given frequency.  
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