Figure 10-1 Basic oscillator configuration.
Figure 10-2 Output voltage versus gain characteristic.

Negative slope (negative resistance)
Figure 10-3 Series resonance circuit with voltage-controlled source term.
Figure 10-4 Tunnel diode oscillator circuit and its small-signal model.
Figure 10-5 Feedback circuits with Pi- and T-type feedback loops.
Figure 10-6 Feedback oscillator with FET electric circuit model.
<table>
<thead>
<tr>
<th></th>
<th>(x_1, x_2)</th>
<th>Hartley</th>
<th>Clapp</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 10-1 Various feedback configurations for oscillator designs based on Figure 10-5(a)
Figure 10-7 Hartley and Colpitts oscillators.
Figure 10-8 Common gate, source, and drain configurations.
Figure 10-9 Colpitts oscillator design.
Figure 10-10 Quartz-resonator equivalent electric circuit representation.
Figure 10-11 Susceptance response of a quartz element.
Figure 10-12 Sourced and loaded transistor and its flow chart model.
Figure 10-13 Network representation of the BJT with base inductance.
Figure 10-14 Rollett stability factor \((k)\) as a function of feedback inductance in common-base configuration.
Figure 10-15 Input stability circle for the oscillator design.
Figure 10-16 Series-feedback BJT oscillator circuit.
Figure 10-17 GaAs FET oscillator implementation with microstrip lines.
Figure 10-18 Stability factor for FET in common-gate mode as a function of gate inductance.
Table 10-2 Dimensions of the transmission lines in the FET oscillator

<table>
<thead>
<tr>
<th>Transmission line</th>
<th>Electrical length, deg.</th>
<th>Width, mil</th>
<th>Length, mil</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL1</td>
<td>80</td>
<td>74</td>
<td>141</td>
</tr>
<tr>
<td>TL2</td>
<td>48.5</td>
<td>74</td>
<td>86</td>
</tr>
<tr>
<td>TL3</td>
<td>67</td>
<td>74</td>
<td>118</td>
</tr>
<tr>
<td>TL4</td>
<td>66</td>
<td>74</td>
<td>116</td>
</tr>
</tbody>
</table>
Figure 10-19 Dielectric resonator (DR) placed in proximity to a microstrip line.
Figure 10-20 Placement of DR along a transmission line and equivalent circuit representation for S-parameter computation.
Figure 10-21 Input stability circle of the FET in the DRO design example.
Figure 10-22 DR-based input matching network of the FET oscillator.
Figure 10-23 Frequency response of the output reflection coefficient for an oscillator design with and without DR.
Figure 10-24 Oscillator design based on a YIG tuning element.
Figure 10-25 Varactor diode oscillator.
Figure 10-26 Circuit analysis of varactor diode oscillator.
Figure 10-27 Gunn element and current versus voltage response.
Figure 10-28 Gunn element oscillator circuit with dielectric resonator (DR).
Figure 10-29 Heterodyne receiver system incorporating a mixer.
Figure 10-30 Basic mixer concept: two input frequencies are used to create new frequencies at the output of the system.
Figure 10-31 Spectral representation of mixing process.

(a) RF signal

(b) LO signal

(c) Down- and upconverted spectral products
Figure 10-32 Problem of image frequency mapping.
Figure 10-33 Two single-ended mixer types.
Figure 10-34 Conversion compression and intermodulation product of a mixer.
Figure 10-35 General single-ended mixer design approach.
Figure 10-36 DC-biasing network for BJT mixer design.

\[Z_{\text{in}}(f_{RF}) = (77.9 - j130.6) \Omega \]

\[Z_{\text{out}}(f_{IF}) = (677.7 - j2324) \Omega \]
Figure 10-37 Connection of RF and LO sources to the BJT.
Figure 10-38 Input matching network for a single-ended BJT mixer.
Figure 10-39 Modified input matching network.
Figure 10-40 Complete electrical circuit of the low-side injection, single-ended BJT mixer with $f_{RF} = 1900$ MHz and $f_{IF} = 200$ MHz.
Figure 10-41 Balanced mixer involving a hybrid coupler.
Figure 10-42 Single-balanced MESFET mixer with coupler and power combiner.
Figure 10-43 Double-balanced mixer design.