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Figure 6-1 Lattice structure and energy levels of silicon. (a) schematic planar crystal
arrangement with thermal breakup of one valent bond resulting in a hole and a moving
electron for T > 0 K. (b) equivalent energy band level representation whereby a hole
is created in the valence band W,, and an electron is produced in the conduction band
W¢. The energy gap between both bands is indicated by W,



Table 6-1

Effective concentrations and effective mass values at T = 300 K

Semiconductor m:/my | mi/mg [N, cm [Ny, cm{n;, cm®
Silicon (Si) 1.08 0.56 2.&10%° | 1.04x 10! | 1.45x 100
Germanium (Ge) 0.55 0.37 1.0410%° | 6.0x 108 | 2.4 x 1013
Gallium Arsenide (GaAs) 0.067 0.48 47107 | 7.0x 108 | 1.79x 10°
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Figure 6-2 Conductivity of Si, Ge, GaAs in the range from -50C to 250<C.
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Figure 6-3 Lattice structure and energy band model for (a) intrinsic, (b) n-type, and
(c) p-type semiconductors at no thermal energy. W and Wy are donor and acceptor
energy levels.
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Figure 6-4

Current flows in the pn-junction.
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Figure 6-5 The pn-junction with abrupt charge carrier transition in the ab-
sence of an externally applied voltage.
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(e) Barrier voltage distribution

Figure 6-5 The pn-junction with abrupt charge carrier transition in the ab-
sence of an externally applied voltage. (Continued)
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Voltage distribution in the pn-junction

(a) Reverse biasing (V4 < 0) (b) Forward biasing (V4 > 0)

Figure 6-6 External voltage applied to the pn-junction in reverse and forward
directions.
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Figure 6-7 The pn-junction capacitance as a function of
applied voltage.
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Figure 6-8 Current-voltage behavior of pn-junction based on Shockley equation.
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Figure 6-9 Metal electrode in contact with p-semiconductor.
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Figure 6-10 Energy band diagram of Schottky contact, (a) before and
(b) after contact.



Table 6-2 Work function potentials of some metals

Material Work Function Potential, VM
Silver (Ag) 426V
Aluminum (Al) 428V
Gold (Au) 510V
Chromium (Cr) 450V
Molybdenum (Mo) 4.60V
Nickel (Ni) 5.15V
Palladium (Pd) 512V
Platinum (Pt) 5.65V
Titanium (Ti) 4.33V
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Figure 6-11 Cross-sectional view of Si Schottky diode.



Figure 6-12 Circuit model of typical Schottky diode under forward bias.
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Figure 6-13 Schottky diode with additional isolation ring suitable for very high
frequency applications.
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Figure 6-14 PIN diode construction.
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Figure 6-15 PIN diode in series connection.
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(b) Shunt connection of PIN diode

Figure 6-16 Attenuator circuit with biased PIN diode in series and shunt
configurations.
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Figure 6-17 Transducer loss of series connected PIN diode under forward-bias con-
dition. The diode behaves as a resistor.
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Figure 6-18 Transducer loss of series connected PIN diode under reverse-bias con-
dition. The diode behaves as a capacitor.
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Figure 6-19 Simplified electric circuit model and capacitance behavior of
varactor diode.
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Figure 6-20

Pulse generation with a varactor diode.
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(a) Layer structure and electric field profile (b) Impact ionization

Figure 6-21 IMPATT diode behavior.
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Figure 6-22 Applied voltage, ionization current, and total current of an IMPATT diode.
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Figure 6-23 Electric circuit representation for the IMPATT diode.



Figure 6-24 Tunnel diode and its band energy representation.
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(b) Top view of a multifinger bipolar junction transistor

Figure 6-25 Interdigitated structure of high-frequency BJT.
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Figure 6-26 Cross-sectional view of a GaAs heterojunction bipolar transistor
involving a GaAlAs-GaAs interface.
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Figure 6-27 npn transistor: (a) structure with electrical charge flow under forward
active mode of operation, (b) transistor symbol with voltage and current directions,
and (c) diode model.
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Figure 6-28 Biasing and input, output characteristics of an npn BJT.



Table 6-3 BJT parameter nomenclature

Collector
Parameter description Emitter (n-type) Base (p-type) (n-type)
E B C
Doping level Np N4 Np
Minority carrier concentrationin E _ 2, E B _ 2,.,B cC _ 2,,,C
thermal equilibrium pn0 =N / I\ID np0 = N / NA pn0 = N / I\ID
Majority carrier concentration i nE pB nC
thermal equilibrium No Po Mo
Spatial extent de dg de
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Figure 6-29 Minority carrier concentrations in forward active BJT.
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Figure 6-30 Reverse active mode of BJT.
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Figure 6-31 Transition frequency as a function of collector current for the 17 GHz
npn wideband transistor BFG403W (courtesy of NXP).
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Figure 6-32 Typical current gain ,8,: as a function of collector current for various
junction temperatures at a fixed VCE'
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Figure 6-33 Typical base current as a function of base-emitter voltage for various
junction temperatures at a fixed Vcg.
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Figure 6-34 Thermal equivalent circuit of BJT.




Pymax = VCEmaxI Cmax

VCElimit VcE

Figure 6-35 Operating domain of BJT in active mode with breakdown
mechanisms.
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Figure 6-36 Construction of (a) MISFET, (b) JFET, and (c) MESFET. The shaded
areas depict the space charge domains.
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Figure 6-37 Functionality of MESFET for different drain-source voltages.
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Figure 6-38 Transfer and output characteristics of an n-channel MESFET.
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Figure 6-39 Drain current versus Vgg computed using the exact and the
approximate equations (6.86) and (6.87).
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Figure 6-40 Drain current as a function of applied drain-source voltage for
different gate-source biasing conditions.
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Figure 6-41 Typical maximum output characteristics and three operating points of
MESFET.
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Figure 6-42 Cross-sectional view of an n-channel MOS transistor: (a) physical con-
struction, (b) symbols.
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Figure 6-43 Generic heterostructure of a depletion-mode HEMT.
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Figure 6-44 Energy band diagram of GaAlAs-GaAs interface for an HEMT.
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Figure 6-45 Drain current in a GaAs HEMT.
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Figure 6-46 The internal structure of the LDMOS power transistor BLF4G22-100 at
three levels of magnification: (a) overall package, (b) die interconnections, and (c)
transistor die (courtesy of NXP).



Figure 6-47 The power transistor mounted on a demonstration board.



