
R. Ludwig and G. Bogdanov
“RF Circuit Design: Theory and Applications”

2nd edition

Figures for Chapter 6

Figure 6-1 Lattice structure and energy levels of silicon. (a) schematic planar crystal 
arrangement with thermal breakup of one valent bond resulting in a hole and a moving 
electron for T > 0 K. (b) equivalent energy band level representation whereby a hole 
is created in the valence band WV and an electron is produced in the conduction band 
WC. The energy gap between both bands is indicated by Wg.
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Table 6-1  Effective concentrations and effective mass values at T = 300 K

Semiconductor

Silicon (Si) 1.08 0.56 2.8 × 1019 1.04 × 1019 1.45 × 1010

Germanium (Ge) 0.55 0.37 1.04 × 1019 6.0 × 1018 2.4 × 1013

Gallium Arsenide (GaAs) 0.067 0.48 4.7 × 1017 7.0 × 1018 1.79 × 106

mn
* /m0 mp

* /m0 NC, cm
3–

NV,  cm
3–

ni, cm
3–



Figure 6-2 Conductivity of Si, Ge, GaAs in the range from –50°C to 250°C.
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Figure 6-3 Lattice structure and energy band model for (a) intrinsic, (b) n-type, and 
(c) p-type semiconductors at no thermal energy. WD and WA are donor and acceptor 
energy levels. 
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Figure 6-4 Current flows in the pn-junction.
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Figure 6-5 The pn-junction with abrupt charge carrier transition in the ab-
sence of an externally applied voltage.
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Figure 6-5 The pn-junction with abrupt charge carrier transition in the ab-
sence of an externally applied voltage. (Continued)
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Figure 6-6 External voltage applied to the pn-junction in reverse and forward 
directions.
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Figure 6-7 The pn-junction capacitance as a function of 
applied voltage.
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Figure 6-8 Current-voltage behavior of pn-junction based on Shockley equation.
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Figure 6-9 Metal electrode in contact with p-semiconductor.

(a) Energy band model (b) Voltage-current characteristic
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Figure 6-10 Energy band diagram of Schottky contact, (a) before and 
(b) after contact.
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Table 6-2  Work function potentials of some metals

Material Work Function Potential, 

Silver (Ag) 4.26 V

Aluminum (Al) 4.28 V

Gold (Au) 5.10 V

Chromium (Cr) 4.50 V

Molybdenum (Mo) 4.60 V

Nickel (Ni) 5.15 V

Palladium (Pd) 5.12 V

Platinum (Pt) 5.65 V

Titanium (Ti) 4.33 V

VM



Figure 6-11 Cross-sectional view of Si Schottky diode.
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Figure 6-12 Circuit model of typical Schottky diode under forward bias.
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Figure 6-13 Schottky diode with additional isolation ring suitable for very high
frequency applications.
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Figure 6-14 PIN diode construction.
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Figure 6-15 PIN diode in series connection.
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Figure 6-16 Attenuator circuit with biased PIN diode in series and shunt 
configurations.

(b) Shunt connection of PIN diode

(a) Series connection of PIN diode

RFC

RFC

PIN Diode

CB CB

DCbias

RFin RFout

RFC

RFC

PIN Diode

CB CB

CB

DCbias

RFin RFout



Figure 6-17 Transducer loss of series connected PIN diode under forward-bias con-
dition. The diode behaves as a resistor.
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Figure 6-18 Transducer loss of series connected PIN diode under reverse-bias con-
dition. The diode behaves as a capacitor.
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Figure 6-19 Simplified electric circuit model and capacitance behavior of 
varactor diode.
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Figure 6-20 Pulse generation with a varactor diode.
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Figure 6-21 IMPATT diode behavior.
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Figure 6-22 Applied voltage, ionization current, and total current of an IMPATT diode.
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Figure 6-23 Electric circuit representation for the IMPATT diode.
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Figure 6-24 Tunnel diode and its band energy representation.
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Figure 6-25 Interdigitated structure of high-frequency BJT.

(a) Cross-sectional view of a multifinger bipolar junction transistor

(b) Top view of a multifinger bipolar junction transistor
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Figure 6-26 Cross-sectional view of a GaAs heterojunction bipolar transistor 
involving a GaAlAs-GaAs interface.
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Figure 6-27 npn transistor: (a) structure with electrical charge flow under forward 
active mode of operation, (b) transistor symbol with voltage and current directions, 
and (c) diode model.

B

E

C

n-type 

collector

p-type 

base

n-type 

emitter

el
ec

tr
o

n
 

co
ll

ec
ti

o
n

el
ec

tr
o

n
 

d
if

fu
si

o
n

el
ec

tr
o

n
 

in
je

ct
io

n

Electron 

recombination

Hole 
recombination

Hole 

injection

C

B

E

IB

IC

IE

VCB

VBE

VCE

C

E

B

(a) (b) (c)

+
+

–
–

+

–



Figure 6-28 Biasing and input, output characteristics of an npn BJT.

(a) Biasing circuit for npn BJT in common-emitter configuration
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Table 6-3  BJT parameter nomenclature

Parameter description Emitter (n-type) Base (p-type)
Collector 
(n-type)

Doping level

Minority carrier concentration in 
thermal equilibrium

Majority carrier concentration in 
thermal equilibrium

Spatial extent

ND
E

NA
B

ND
C

pn0

E
ni

2
ND

E⁄= np0

B
ni

2
NA

B⁄= pn0

C
ni

2
ND

C⁄=

nn0

E
pp0

B
nn0

C

dE dB dC



Figure 6-29 Minority carrier concentrations in forward active BJT.
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Figure 6-30 Reverse active mode of BJT.
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Figure 6-31 Transition frequency as a function of collector current for the 17 GHz 
npn wideband transistor BFG403W (courtesy of NXP).
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Figure 6-32 Typical current gain  as a function of collector current for various 
junction temperatures at a fixed 
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Figure 6-33 Typical base current as a function of base-emitter voltage for various 
junction temperatures at a fixed VCE.
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Figure 6-34 Thermal equivalent circuit of BJT.
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Figure 6-35 Operating domain of BJT in active mode with breakdown 
mechanisms.
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Figure 6-36 Construction of (a) MISFET, (b) JFET, and (c) MESFET. The shaded 
areas depict the space charge domains.

p-type substrate

induced 

n-channel

Source

(a) Metal insulator semiconductor FET (MISFET)

(b) Junction field effect transistor (JFET)

(c) Metal semiconductor FET (MESFET)

Gate Drain
Insulator

n+n+

Source Gate Drain
Insulator

n

p+ substrate

p+
n+ n+

n

Buffer 

layer
Semi-insulating layer

Source Gate Drain

n+ n+



Figure 6-37 Functionality of MESFET for different drain-source voltages.
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Figure 6-38 Transfer and output characteristics of an n-channel MESFET.
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Figure 6-39 Drain current versus VGS computed using the exact and the 
approximate equations (6.86) and (6.87).
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Figure 6-40 Drain current as a function of applied drain-source voltage for 
different gate-source biasing conditions.
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Figure 6-41 Typical maximum output characteristics and three operating points of 
MESFET.
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Figure 6-42 Cross-sectional view of an n-channel MOS transistor: (a) physical con-
struction, (b) symbols.
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Figure 6-43 Generic heterostructure of a depletion-mode HEMT.
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Figure 6-44 Energy band diagram of GaAlAs-GaAs interface for an HEMT.
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Figure 6-45 Drain current in a GaAs HEMT.
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Figure 6-46 The internal structure of the LDMOS power transistor BLF4G22-100 at 
three levels of magnification: (a) overall package, (b) die interconnections, and (c) 
transistor die (courtesy of NXP).
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Figure 6-47 The power transistor mounted on a demonstration board.


