R. Ludwig and G. Bogdanov "RF Circuit Design: Theory and Applications" 2nd edition

Figures for Chapter 4

Figure 4-1 Basic voltage and current definitions for single- and multiport network.

Figure 4-2 Pi-network as a two-port network.

Figure 4-3 Common-emitter low-frequency, small-signal transistor model.

Figure 4-4 Series connection of two two-port networks.

Figure 4-5 (a) Short circuit in series connection. (b) Transformer to avoid short circuit.

Figure 4-6 Connection of two-port networks suitable for hybrid representation.

Figure 4-7 Series connection of two hybrid networks.

Figure 4-8 Parallel connection of two two-port networks.

Figure 4-9 Cascading two networks.

Circuit	ABCD Parameters	
$\begin{array}{c c} i_1 & Z & i_2 \\ \bullet & \bullet & \bullet \\ \downarrow & \downarrow & \downarrow \\ \hline v_1 & & v_2 \\ \hline \bullet & & \bullet \\ \hline \end{array}$	A = 1	B = Z
	<i>C</i> = 0	<i>D</i> = 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A = 1	B = 0
	C = Y	<i>D</i> = 1
$i_1 Z_A \qquad Z_B i_2$ $\downarrow \qquad \qquad$	$A = 1 + \frac{Z_A}{Z_C}$	$B = Z_A + Z_B + \frac{Z_A Z_B}{Z_C}$
	$C = \frac{1}{Z_C}$	$D = 1 + \frac{Z_B}{Z_C}$
$\begin{array}{c c} i_1 & Y_C & i_2 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ v_1 & Y_A & \downarrow & \downarrow & Y_B & v_2 \\ \hline & & & & & & & & \\ \hline \end{array}$	$A = 1 + \frac{Y_B}{Y_C}$	$B = \frac{1}{Y_C}$
	$C = Y_A + Y_B + \frac{Y_A Y_B}{Y_C}$	$D = 1 + \frac{Y_A}{Y_C}$
$ \begin{array}{c c} i_1 & & & i_2 \\ \vdots & & & & i_2 \\ \vdots & & & & & & i_2 \\ \vdots & & & & & & & & & \\ v_1 & Z_0, \beta & & v_2 \\ \hline \hline \hline \hline \end{array} $	$A = \cos(\beta l)$	$B = jZ_0 \sin(\beta l)$
	$C = \frac{j\sin(\beta l)}{Z_0}$	$D = \cos(\beta l)$
i_1 N:1 i_2	A = N	B = 0
$ \begin{array}{c} \overline{v_1} \\ \overline{\bullet} \\ \end{array} $	C = 0	$D = \frac{1}{N}$

 Table 4-1
 ABCD-parameters of several two-port circuits

	[Z]	[Y]	[h]	[ABCD]
[Z]	$\begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix}$	$\begin{bmatrix} Z_{22} & Z_{12} \\ \overline{\Delta Z} & -\overline{\Delta Z} \\ Z_{21} & \overline{Z_{11}} \\ -\overline{\Delta Z} & \overline{\Delta Z} \end{bmatrix}$	$\begin{bmatrix} \Delta Z & Z_{12} \\ Z_{22} & Z_{22} \\ \\ Z_{21} & 1 \\ \hline Z_{22} & Z_{22} \end{bmatrix}$	$\begin{bmatrix} Z_{11} & \Delta Z \\ Z_{21} & Z_{21} \\ \\ \frac{1}{Z_{21}} & \frac{Z_{22}}{Z_{21}} \end{bmatrix}$
[Y]	$\begin{bmatrix} \frac{Y_{22}}{\Delta Y} & -\frac{Y_{12}}{\Delta Y} \\ -\frac{Y_{21}}{\Delta Y} & \frac{Y_{11}}{\Delta Y} \end{bmatrix}$	$\begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix}$	$\begin{bmatrix} \frac{1}{Y_{11}} & -\frac{Y_{12}}{Y_{11}} \\ \frac{Y_{21}}{Y_{11}} & \frac{\Delta Y}{Y_{11}} \end{bmatrix}$	$\begin{bmatrix} -\frac{Y_{22}}{Y_{21}} & -\frac{1}{Y_{21}} \\ -\frac{\Delta Y}{Y_{21}} & -\frac{Y_{11}}{Y_{21}} \end{bmatrix}$
[h]	$\frac{\Delta h}{h_{22}} \frac{h_{12}}{h_{22}} \\ -\frac{h_{21}}{h_{22}} \frac{1}{h_{22}}$	$\frac{\frac{1}{h_{11}} - \frac{h_{12}}{h_{11}}}{\frac{h_{21}}{h_{11}} - \frac{\Delta h}{h_{11}}}$	$h_{11} h_{12} \\ h_{21} h_{22}$	$-\frac{\Delta h}{h_{21}} - \frac{h_{11}}{h_{21}}$ $-\frac{h_{22}}{h_{21}} - \frac{1}{h_{21}}$
[ABCD]	$\frac{A}{C} \frac{\Delta ABCD}{C}$ $\frac{1}{C} \frac{D}{C}$	$\frac{D}{B} - \frac{\Delta ABCD}{B}$ $-\frac{1}{B} - \frac{A}{B}$	$\frac{B}{D} \frac{\Delta ABCD}{D}$ $-\frac{1}{D} \frac{C}{D}$	A B C D

Table 4-2Conversion between different network representations

Figure 4-10 Microwave amplifier circuit diagram.

Figure 4-11 Subnetwork representation of the microwave amplifier.

Figure 4-12 High-frequency hybrid transistor model.

Figure 4-13 Small-signal current gain of the amplifier versus frequency for different values of the feedback resistor.

Figure 4-14 Convention used to define S-parameters for a two-port network.

Figure 4-15 Measurement of S_{11} and S_{21} by matching the line impedance Z_0 at port 2 through a corresponding load impedance $Z_L = Z_0$.

Figure 4-16 Measurement of S_{22} and S_{12} by matching the line impedance Z_0 at port 1 through a corresponding input impedance $Z_G = Z_0$.

Figure 4-17 S-parameter computation for a T-network. (a) circuit diagram; (b) circuit for S_{11} and S_{21} measurements; (c) circuit for S_{12} and S_{22} measurements.

Figure 4-18 Cascading of two networks A and B.

Figure 4-19 Terminated transmission line segment with incident and reflected power wave description. (a) Conventional form, and (b) Signal flow form.

a

b

(a) Source node *a*, which launches wave.

(b) Sink node *b*, which receives wave.

 $a \Gamma b$

(c) Branch connecting source and sink.

Figure 4-20 Generic source node (a), receiver node (b), and the associated branch connection (c).

Figure 4-21 Terminated transmission line with source. (a) conventional form, (b) signal flow form, and (c) simplified signal flow form.

Figure 4-22 A self-loop that collapses to a single branch.

Description	Graphical Representation		
Nodal Assignment	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
Branch	$Z_{0} \xrightarrow{b \leftarrow ++} Z_{L} \Longrightarrow \xrightarrow{b \leftarrow b} \Gamma_{L}$		
Series Connection	$\overset{S_{ba}}{a \xrightarrow{b}} \overset{S_{cb}}{c} \implies \overset{S_{ba}}{a \xrightarrow{c}} \overset{S_{cb}}{c}$		
Parallel Connection	$\xrightarrow{S_1} \xrightarrow{S_1 + S_2} \xrightarrow{a \xrightarrow{b}} \xrightarrow{b} \xrightarrow{a \xrightarrow{b}} \xrightarrow{b}$		
Splitting of Branches	$b \stackrel{S_2}{\longrightarrow} \stackrel{S_3}{\longrightarrow} c \implies b \stackrel{S_2}{\longrightarrow} \stackrel{S_3}{\longrightarrow} c \implies a \stackrel{S_2}{\longrightarrow} c \stackrel{S_3}{\longrightarrow} c \implies a \stackrel{S_2}{\longrightarrow} c \stackrel{S_3}{\longrightarrow} c \implies a \stackrel{S_2}{\longrightarrow} c \stackrel{S_3}{\longrightarrow} c \implies a \stackrel{S_3}{\longrightarrow} c \implies a \stackrel{S_2}{\longrightarrow} c \implies a \stackrel{S_3}{\longrightarrow} c \implies a \stackrel{S_3}{\implies} c \implies a S_$		
Self-Loop	$a \xrightarrow{b}_{c} c \Rightarrow a \xrightarrow{1/(1-\Gamma)}_{c}$		

Table 4-3Signal flowgraph building blocks.

Figure 4-23 Sourced and terminated two-port network.

Step 3

Step 5

Figure 4-24 Step-by-step simplification to determine the ratio a_1/b_s .

Figure 4-25 Two-port network with finite-length transmission line segments.

Figure 4-26 Transmission line attached to a voltage source and terminated by a load impedance.

Figure 4-27 Signal flowgraph diagram for transmission line system in Figure 26.

Figure 4-28 Measurement system for S_{11} and S_{21} parameters using a network analyzer.

Figure 4-29 (a) Block diagram of the setup for measurement of S-parameters of a two-port network; (b) signal flowgraph of the measurement test setup.

Figure 4-30 Signal flow graphs of TRL method: (a) Through, (b) Reflect, (c) Line configurations.

Figure 4-31 Resistive Pi-network attenuator with arbitrary characteristic impedances at the ports.

Figure 4-32 Pi-network of a 3 dB attenuator with SMA connectors.

Figure 4-33 S_{11} and S_{21} recording of the attenuator.