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Figures for Chapter 2

Figure 2-1 Voltage distribution as a function of time (z = 0) and as a function of 
space (t = 0).
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Figure 2-2 Amplitude measurements of 10 GHz voltage signal at the beginning (lo-
cation A) and somewhere along a wire connecting load to source.
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Figure 2-3 Partitioning an electric line into small elements  over which 
Kirchhoff’s laws of constant voltage and current can be applied.

z z + ∆z

z + ∆z

R1 L1

R2 L2

G C

z

I(z) I(z + ∆z)

V(z + ∆z)V(z)

+

– –

+

z∆



Figure 2-4 Geometry and field distribution in two-wire parallel conductor 
transmission line.
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Figure 2-5 Coaxial cable transmission line.
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Figure 2-6 Microstrip transmission line representation.
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Figure 2-7 Electric flux density field leakage as a function of dielectric constants.
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Figure 2-8 Triple-layer transmission line configuration. 
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Figure 2-9 Parallel-plate transmission line.
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Figure 2-10 Segmentation of two-wire transmission line into ∆z-long sections suit-
able for lumped parameter analysis. 
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Figure 2-11 Segmentation of a coaxial cable into ∆z length elements suitable for 
lumped parameter analysis.
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Figure 2-12 Generic electric equivalent circuit representation. 
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Figure 1-1 Ampère’s law linking the current flow to the magnetic field.
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Figure 2-13 Magnetic field distribution inside and outside of an infinitely long 
wire of radius a = 5 mm carrying a current of 5 A.
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Figure 2-14 The time rate of change of the magnetic flux density induces a 
voltage.
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Figure 2-15 Parallel-plate transmission line geometry. The plate width w is large 
compared with the separation d.
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Table 2-1  Transmission line parameters for three line types

Parameter Two-Wire Line Coaxial Line Parallel-Plate Line
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Figure 2-16 Segment of a transmission line with voltage loop and current 
node.
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Figure 2-17 Integration surface element for Faraday’s law 
application.
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Figure 2-18 Surface element used to apply Ampère’s law.
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Figure 2-19 Microstrip characteristic impedance as a function of w/h.
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Figure 2-20 Effective dielectric constant of the microstrip line as a function of w/h 
for different dielectric constants.
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Figure 2-21 Effect of conductor thickness on the characteristic impedance of a mi-
crostrip line placed on a 25 mil thick FR4 printed circuit board.
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Figure 2-22 Terminated transmission line at location z = 0.

Zin

Z0 ZL

0z = –l

z

Γ0



Figure 2-23 Short-circuited transmission line and new coordinate system d.
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Figure 2-24 Standing wave pattern for various instances of time.
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Figure 2-25 SWR as a function of load reflection coefficient 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20

|Γ0|

S
W

R

Γ0 .



Figure 2-26 Voltage, current, and impedance as a function of line length for a short-
circuit termination.
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Figure 2-27 Magnitude of the input impedance for a 10 cm long, short-
circuited transmission line as a function of frequency.
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Figure 2-28 Voltage, current, and impedance as a function of line length for an 
open-circuit termination.
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Figure 2-29 Impedance magnitude for a 10 cm long, open-circuited transmission 
line as a function of frequency.
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Figure 2-30 Input impedance matched to a load impedance through a  line seg-
ment.
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Figure 2-31 Input impedance of quarter-wave transformer.
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Figure 2-32 Magnitude of Zin for frequency range of 0 to 2 GHz and fixed 
length d. 
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Figure 2-33 Generic transmission line circuit involving source and load 
terminations. 
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Figure 2-34 Equivalent lumped input network for a transmission line configuration.
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Figure 2-35 Impedance of a coaxial cable terminated by a  resistor: 
(a) network analyzer measurement, (b) theoretical prediction.
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Figure 2-36 Network analyzer with the resistive 100  test load attached.Ω


