R. Ludwig and G. Bogdanov "RF Circuit Design: Theory and Applications" 2^{nd} edition

Figures for Chapter 1

Figure 1-2(a) Simplified circuit diagram of the first stage of a 2 GHz power amplifier for a mobile phone.

Figure 1-2(b) Printed circuit board layout of the power amplifier.

Figure 1-3 Electromagnetic wave propagation in free space. The electric and magnetic fields are shown at a fixed instance in time as a function of space (\hat{x} , \hat{y} are unit vectors in *x*- and *y*-direction).

Table 1-1Frequency bands and their applications

Frequency Band	Frequency	Typical Application	
VHF (Very High Frequency)	88 – 108 MHz	FM broadcasting	
UHF (Ultrahigh Frequency)	824 – 894 MHz 810 – 956 MHz	CDMA mobile phone service GSM mobile phone service	
UHF (Ultrahigh Frequency)	2,400 MHz	WLAN	
SHF (Superhigh Frequency)	5,000 – 5,850 MHz	Unlicensed National Information Infrastructure	
SHF (Superhigh Frequency)	6,425 – 6,523 MHz	Cable Television Relay	
SHF (Superhigh Frequency)	3,700 – 4,200 MHz	Geostationary fixed satellite service	
X Band	8 – 12.5 GHz	Marine and airborne radar	
Ku Band	12.5 – 18 GHz	Remote sensing radar	
K Band	18 – 26.5 GHz	Radar	
Ka Band	26.5 – 40 GHz	Remote sensing radar	

Figure 1-4 Skin depth behavior of copper $\sigma_{Cu} = 64.5 \times 10^{6}$ S/m, aluminum $\sigma_{AI} = 40.0 \times 10^{6}$ S/m, gold $\sigma_{Au} = 48.5 \times 10^{6}$ S/m, and typical solder $\sigma_{solder} = 6.38 \times 10^{6}$ S/m.

Figure 1-5(a) Schematic cross-sectional AC current density representation normalized to DC current density.

Figure 1-5(b) Frequency behavior of normalized AC current density for a copper wire of radius a = 1 mm.

Figure 1-6 The exact theoretical per-unit-length resistance as a function of frequency for round wires of varying materials and radii. The dashed lines represent the DC and skin depth based resistance approximations.

Figure 1-7 One- and quarter-watt thin-film chip resistors in comparison with a conventional quarter-watt resistor.

Figure 1-8 Electric equivalent circuit representation of a high frequency resistor.

Figure 1-9 Electric equivalent circuit representation of a wirewound resistor at high frequency.

Figure 1-10 Absolute impedance value of a 2000- Ω thin-film resistor as a function of frequency.

Figure 1-11 Electric equivalent circuit of a capacitor at high frequency.

Figure 1-12 Absolute value of the capacitor impedance as a function of frequency.

Figure 1-13 Actual construction of a surface-mounted ceramic multilayer capacitor.

Figure 1-14 Distributed capacitance and series resistance in the inductor coil.

Figure 1-15 Equivalent circuit of the high-frequency inductor.

Figure 1-16 Inductor dimensions of an air-core coil.

Figure 1-17 Frequency response of the impedance of an RFC.

Geometry	Size Code	Length <i>L</i> , mils	Width <i>W</i> , mils
	0402	40	20
	0603	60	30
	0805	80	50
	1206	120	60
K → F · · ·	1812	120	180

Table 1-2 Standard sizes of chip resistors

Figure 1-18 Cross-sectional view of a typical chip resistor.

Figure 1-19 Cross section of a typical single-plate capacitor connected to the board.

Dual capacitor

Quadrupole capacitor

Figure 1-20 Clusters of single-plate capacitors sharing a common dielectric material.

Figure 1-21 Typical size of an RF wire-wound air-core inductor (courtesy of Coilcraft, Inc.).

Figure 1-22 Flat coil configuration. An air bridge is made by using either a wire or a conductive ribbon.

Figure 1-23 Construction of a three-dimensional LTCC/HTCC module made out of individual layers of ceramic tape that are collated, stacked, and fired (courtesy of Lamina Ceramics Inc.).

Figure 1-24 Impedance and quality factor behavior of a real, non-magnetic core inductor as measured by the HP 4192A LCR meter.

Figure 1-25 LCR meter with a plastic core torroidal inductor connected to the test fixture and a measurement taken at 100 kHz.